SUPPOSITORIES AND PESSARIES

- Suppositories are solid dosage forms intended for insertion into body orifices where they melt, soften, ordissolve and exert localized orsystemic effects.
- Dosage form characteristics:
- **a.** <u>Rectal suppositories</u> for adults weigh 2 gm andare torpedo shape. Children's suppositories weigh about 1 gm.
- Vaginal suppositories or Pessaries weigh about 3-5gm and are molded in globular or oviform shape or compressed on a tablet press into conical.<u>Urethral suppositories</u> called bougies are pencil shape. Those intended for males weigh 4 gm eachand are 100-150 mm long.
 those for females are 2 gm each and 60-75 mm in length.

C. <u>Nasal suppositories:</u> called nasal bougies or buginaria meant for introduction in to nasal cavity.

- > They are prepared with glycerogelatin base.
- They weigh about 1 gm and length 9–10 cm.

d. Ear cones:

- Aurinaria and meant for introduction into ear.
- Rarely used
- > Theobroma oil is used as base.
- Prepared in urethral bougies mould and cutaccording to size.

ADVANTAGES:

- _ Can exert local effect on rectal mucosa.
- _ Used to promote evacuation of bowel.
- _ Avoid any gastrointestinal irritation.
- _ Can be used in unconscious patients (e.g. duringfitting).

- _ Can be used for systemic absorption of drugs and avoid first-pass metabolism.
- Babies or old people who cannot swallow oralmedication.
- Post operative people who cannot be administeredoral medication.
- People suffering from severe nausea or vomiting.

DISADVANTAGES OF SUPPOSITORIES:

- The problem of patient acceptability.
- Suppositories are not suitable for patients sufferingfrom diarrhea.
- In some cases the total amount of the drug mustbe given will be either too irritating or in greater amount than reasonably can be placed into suppository.

- Pessaries are a type of suppository intended forvaginal use.
- The larger size moulds are usually used in thepreparation of pessaries such as 4 g and 8 g moulds.
- Pessaries are used almost exclusively for local medication, the exception being prostaglandinpessaries that do exert a systemic effect.

British Pharmacopoeia (BP) definition:

"Pessaries are solid, single-dose preparations. They have various shapes, usually ovoid, with a volume and consistency suitable for insertion into the vagina. They contain one or more active substances dispersed or dissolved in a suitable bases that may be soluble or dispersible in water or may melt at body temperature. Excipients such as diluents, adsorbents, surface-active agents, lubricants, antimicrobial preservatives and colouring matter, authorised by the competent

authority, may be added, if necessary."

Common ingredients for inclusion in pessaries for local action include:

- antiseptics
- contraceptive agents
- local anaesthetics
- various therapeutic agents to treat trichomonal,bacterial and monilial infections.

IDEAL SUPPOSITORY BASE:

- 1. Melts at body temperature or dissolves in bodyfluids.
- 2. Non-toxic and non-irritant.
- 3. Compatible with any medicament.
- 4. Releases any medicament readily.
- 5. Easily moulded and removed from the mould.
- 6. Stable to heating above the melting point.

I <u>FATTY BASES</u>: designed to melt at bodytemperature.

- 1 Theobroma oil (Cocoa butter)
- It is a yellowish-white solid with an odour of chocolate and is a mixture of glyceryl esters of different unsaturated fatty acids.

Advantages:

- a- A melting range of 30 36°C (solid at roomtemperature but melts in the body).
- **b** Readily melted on warming, rapid setting oncooling.

- **C** Miscible with many ingredients.
- d– Non-irritating.

<u>Disadvantages:</u>

- <u>a– Polymorphism</u>:
- When melted and cooled it solidifies in different crystalline forms, depending on the temperature ofmelting, rate of cooling and the size of the mass.
- If melted at not more than 36°C and slowly cooled it forms stable beta crystals with normal melting point.
- If over-heated then cooled it produce unstable gammacrystals which melt at about 15°C or alpha crystals melting at 20°C.

Cocoa butter must be slowly melted over a warm waterbath to avoid the formation of the unstable crystalline form.

b- Adherence to the mould:

- c- Softening point too low ross. dimates.
- d- Melting point reduced by soluble ingredients: Phenol and chloral hydrate have a tendency to lowerthe melting point of cocoa butter.- So, solidifying agents like beeswax (4%) may be incorporated to compensate for the softening effect of the added substance.
- e- Rancidity on storage:
- f- **Poor water-absorbing ability**: Improved by theaddition of emulsifying agents.

SYNTHETIC HARD FAT:

For example: Suppocire, witepsol.

Advantages:

- a- Their solidifying points are unaffected byoverheating.
- b- They have good resistance to oxidation becauseof the lower content of unsaturated fatty acids.
- c- The difference between melting and setting points is small. Hence they set quickly, the risk of sedimentation of suspended ingredients is low.

d-They are marketed in a series of grades withdifferent melting point ranges, which can be chosen to suit particular products and climaticcondition.

- e-They contain a proportion of w/o emulsifyingagents, and therefore, their water-absorbing capacities are good.
- f- No mould lubricant is necessary because theycontract significantly on cooling.

Disadvantages:

- a- Brittle if cooled rapidly, avoid refrigeration duringpreparation.
- b- The melted fats are less viscous than theobromaoil. As a result greater risk of drug particles to sediment during preparation lack of uniform drugdistribution give localized irritancy.

- II Water-soluble and water-miscible bases:
- 1- Glycero-gelatin:

DISADVANTAGES:

- a- A physiological effect: osmosis occurs during dissolving in the mucous secretions of the rectum, producing a laxative effect.
- b- Can cause rectal irritation due to small amount ofliquid present.
- c- Unpredictable solution time.
- d- Hygroscopic: So, they should be packaged in tight containers and also have dehydrating effects on the rectal and vaginal mucosa leading to irritation.
- e- Microbial contamination likely.

2 – <u>Macrogols (polyethylene glycols):</u>

- Polyethylene glycols are polymers of ethylene oxide andwater, prepared to various chain lengths, molecular weights, and physical states.
- The numerical designations refer to the averagemolecular weights of each of the polymers.
- Polyethylene glycols (PEGs) having average molecularweights of 300, 400, and 600 are clear, colorless liquids, while those with molecular weights of 600-1000 are semisolids.
- Those having average molecular weights of greater than1000 are wax-like, white solids with the hardness increasing with an increase in the molecular weight.
 - These polyethylene glycols can be blendedtogether to
- produce suppository bases with varying: meltingpoints, dissolution rates and physical characteristics.
- Drug release depends on the base dissolvingrather than melting.
- The melting point is often around 50°C.
- Higher proportions of high molecular weightpolymers
- produce preparations which release the drug slowlyand are also brittle.

Preparation of suppositories:

- Suppositories are prepared by four methods: I Hand moulding:
- -Hand molding is useful when we are preparing asmall number of suppositories:

- **1** The drug is made into a fine powder.
- 2. It is incorporated into the suppository base bykneading with it or by trituration in a mortar.
- $\mathbf{3}$. The kneaded mass is rolled between fingers intorod shaped units.
- **4.** The rods are cut into pieces.
 - II Compression molding:
 - 1. The cold mass of the base containing the drug is compressed into suppositories usinga hand operated machine.
- **Advantages:
- It is a simple method.
- $\mathbf{2}$. It gives suppositories that are more elegant thanhand moulded suppositories.
- $\mathbf{3}$. In this method sedimentation of solids in the baseis prevented.
- Suitable for heat labile medicaments.

- **Disadvantages:
- 1.Air entrapment may take place.
- 2. This air may cause weight variation.
- 3. The drug and/or the base may be oxidized by thisair.
 - III Pour moulding:
 - Using a supp. mould which is made of metal or plastic. Traditional metal moulds are in two halveswhich are clamped together with a screw.
 - Steps:
 - The base is melted and precautions are taken notto overheat it.
 - 2. The drug is incorporated in it.
 - **3.** The molten liquid mass is poured into chilled(lubricated if cocoa butter or glycrogelatin isthe base)molds.

4. After solidification, the cone shaped suppositories are removed from the mould.

5. Lubricating the cavities of the mould is helpful inproducing elegant suppositories and free

from surface depression.

- The lubricant must be different in nature from thesuppository base, otherwise it will be become absorbed and will fail to provide a buffer film between the mass &the metal.
- The water soluble lubricant is useful for fatty baseswhile the oily lubricant is useful for water soluble bases.
- The lubricant should be applied on a pledget of gauze or with fairly stiff brush.

LUBRICANTS FOR USE WITH SUPPOSITORY BASES:

- Theobroma oil
- Glycerol– gelatin base

Lubricant

- Soap spirit
- liquid paraffin

No lubricant required

- Synthetic fats
- Macrogols

- IV Automatic Moulding machine:
- All the operations in pour moulding are done byautomatic machines. Using this machine, up to about 10,000 suppositories per hour can be produced.
- Packaging and storage:
- -Suppositories are usually packed in tin oraluminium, paper or plastic.
- -Poorly packed suppositories may give rise tostaining, breakage or deformation by melting.
- -Both cocoa butter and glycerinated gelatin suppositories stored preferably in a refrigerator.
- - Polyethylene glycol suppositories stored at usualroom temperature without the requirement of refrigeration.

