

SNS COLLEGE OF NURSING COIMBATORE-35

PROGRAMME : B.Sc. Nursing II Year

COURSE : Pathology II and Genetics

SEMESTER :III

UNIT : VI

TOPIC : Genetic Disorders

PREPARED BY : Mrs. Sornambiga R., Asst Prof

OBJECTIVES

After the lecture, the students will be able to describe the various genetic disorders, develop a desirable attitude and apply them in clinical practice

OVERVIEW OF GENETIC DISORDERS

Definition: Diseases caused by genetic abnormalities

Types: Single-gene, chromosomal, multifactorial

Prevalence: ~1 in 2,500 newborns have genetic disorders

Causes: Mutations, chromosomal errors, and environmental factors

Health Impact: Physical, developmental, systemic effects

3/22

INTRODUCTION OF GENETIC DISORDERS

* FRAGILE X SYNDROME

* CRI-DU-CHAT SYNDROME

* IMPRINTING DISORDERS

WILLIAMS SYN number or structure of entire chromosomes. While some

new (de novo) mutations that occur randomly or due to

environmental factors.

 $1,280 \times 72$

- •Examples: Cystic fibrosis, Down syndrome, diabetes
- •Diagnosis: Genetic testing, clinical evaluation
- •Treatment: Symptomatic, gene therapy (emerging)
- •Nursing Role: Assessment, education, support
- •Importance: Affects quality of life, healthcare needs

CASE STUDY: GENETIC DISORDER

- •Age: 8-year-old female child
- •Presenting Complaints: Delayed milestones, difficulty in learning, short stature, and webbed neck
- •Birth History: Normal vaginal delivery, birth weight slightly below average
- •Family History: Non-consanguineous marriage; no similar complaints in siblings

CLINICAL EXAMINATION

- •Short stature (< 3rd percentile for age)
- •Broad chest with widely spaced nipples
- •Webbed neck
- •Low hairline at the back
- •Poorly developed secondary sexual characteristics
- •Intelligence: Normal

INVESTIGATIONS

Echocardiography: Coarctation of aorta

•Ultrasound abdomen: Streak ovaries

•Hormonal assay: Low estrogen, elevated FSH & LH

SNSCN

PROVISIONAL DIAGNOSIS

→ Turner Syndrome (Monosomy X – Genetic Disorder)

DIFFERENTIAL DIAGNOSIS

Differential Diagnosis

- •Noonan syndrome
- •Klinefelter syndrome (in males, 47, XXY)
- •Constitutional short stature

MANAGEMENT-SUPPORTIVE CARE

Growth hormone therapy to improve height

Estrogen replacement therapy for secondary sexual characteristics & bone

health

Cardiac surgery if required (for coarctation of the aorta)

OUTCOME & COUNSELING

- •With early diagnosis and hormone therapy, quality of life improves significantly
- •Normal intelligence allows independent living with proper medical care
- •Genetic counseling for family recurrence risk is very low (usually sporadic, not inherited)

TYPES OF GENETIC DISORDERS

•Single-Gene: Mutations in one gene (e.g., sickle cell anemia)

•Chromosomal: Abnormal chromosome number/structure

syndrome)

•Multifactorial: Genes + environment (e.g., heart disease)

•Mitochondrial: Mutations in mitochondrial DNA (e.g., LHON)

•Autosomal Dominant: One mutated allele (e.g., Huntington's)

•Autosomal Recessive: Two mutated alleles (e.g., cystic fibrosis)

CAUSES OF GENETIC DISORDERS

- •Mutations: Point mutations, insertions, deletions
- •Chromosomal Errors: Aneuploidy, translocations
- •Environmental: Teratogens, radiation exposure
- •Germline Mutations: Inherited from parents
- •Somatic Mutations: Acquired, not inherited
- •Epigenetic Changes: Altered gene expression

HEALTH IMPACTS

9/23/2025

- •Developmental: Intellectual disability (e.g., Down syndrome)
- •Systemic: Multi-organ dysfunction (e.g., cystic fibrosis)
- •Metabolic: Enzyme deficiencies (e.g., PKU)
- •Neurological: Seizures, motor deficits (e.g., Huntington's)
- •Reproductive: Infertility (e.g., Turner syndrome)

DIAGNOSIS AND SCREENING

Genetic Testing: Detects mutations, chromosomal errors

Newborn Screening: Identifies disorders like PKU

Prenatal Testing: Amniocentesis, chorionic villus sampling

Family History: Key to identifying risk

DNA Sequencing: Identifies specific mutations

TREATMENT AND MANAGEMENT

- •Symptomatic: Treat symptoms (e.g., insulin for diabetes)
- •Gene Therapy: Emerging for single-gene disorders
- •Surgery: Correct malformations (e.g., cleft palate)
- •Psychosocial Support: Address emotional needs
- •Follow-Up: Monitor for complications

- •Assessment: Collect detailed family history
- •Education: Explain disorders, treatment options
- •Advocacy: Ensure informed consent for testing
- •Emotional Support: Address patient/family concerns
- •Documentation: Record genetic findings, care plans
- •Ethical Practice: Maintain confidentiality
- •Patient Empowerment: Encourage informed decisions

CONCLUSION

- Genetic disorders significantly impact health
- Early diagnosis and management improve outcomes
- Nurses are vital in assessment, education, and support
- Ethical care ensures patient trust
- Advances in genetics enhance treatment options

COMPETITIVE EXAM QUESTIONS (MCQS)

- •Question 1: Cystic fibrosis is an example of a:
 - A) Chromosomal disorder
 - B) Single-gene disorder
 - C) Multifactorial disorder
 - D) Mitochondrial disorder
 - Answer: B) Single-gene disorder
- •Question 2: Down syndrome is caused by:
 - A) Point mutation
 - B) Trisomy 21
 - C) Deletion
 - D) X-linked mutation
 - Answer: B) Trisomy 21
- •Question 3: A key diagnostic tool for genetic disorders is:
 - A) ECG
 - B) Genetic testing
 - C) X-ray
 - D) Spirometry
 - Answer: B) Genetic testing

REFERENCES

1.American Nurses Association. (2022). Essentials of Genetic and Genomic Nursing: Competencies, Curricula Guidelines, and Outcome Indicators (3rd ed.).

1. Reference for nursing roles in genetic care.

2.Strachan, T., & Read, A. P. (2018). Human Molecular Genetics (5th ed.). Garland Science.

1. Used for the molecular basis of genetic disorders.

3. World Health Organization. (2022). Genomics and Health.

Retrieved from https://www.who.int/genomics/en/

GENETIC DISORDER/PATHO-210/SORNAMBIGA R Asst. Prof. / PATHOLOGY & GENETICS/SNS COLLEGE OF NURSING