

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

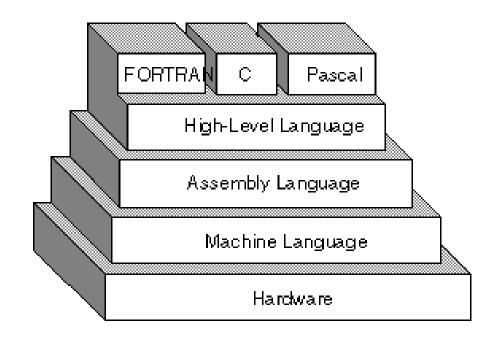
An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

PIC16F877-Instruction Set

Dr.G.Arthy Assistant Professor Department of EEE SNS College of Engineering PIC16F877 Architecture/Dr.G.Arthy/EEE/SNSCE



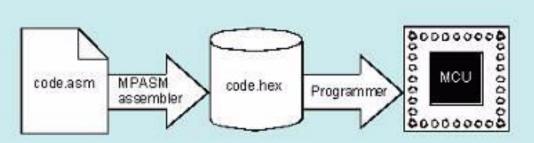
Programming Language

- The lowest-level language is called <u>Machine languages</u>. It means those languages which are closer to the understanding of machine rather than human beings. A machine language thus comprises a string of binary 0's and 1's.
- Machine language is actually a coded set of instructions for a particular CPU (Central Processing Unit), and it is also known as a machine code.
- A machine language is designed to be used by a computer without the need of translation.

Machine Language

Disadvantage :

- 1. It is a machine dependent programming language. Machine dependent means the program designed in one type of machine or computer could not be run on other type of computer or machine. So programs designed in the machine language in one computer are not easily portable to other computers.
- 2. It is a very difficult language to understand and learn. If there is any problem in the program, written in machine language, then it is very difficult to find out the correct mistake.



Assembly language

- Assembly language is one level above the machine language. (Both Machine and Assembly language are considered low-level language)
- It uses certain predefined symbolic codes instead of binary codes. These symbolic codes are called mnemonics.
- Assembly language programs are translated into machine language by a program called an assembler.

- High-Level Language overcomes the limitation of writing a program in Machine and Assembly language as it is difficult and time consuming.
- In High-Level Language, the programs can be written using simple English words. Examples of High-Level Language are BASIC, Fortran, COBOL, C, C++.
- Programs written in high-level languages are translated into machine language by a compiler.

Instructions of PIC

- PIC16F877 has 35 instructions.
- Each instruction if 14 bit words.
- RISC architecture

Instruction Set

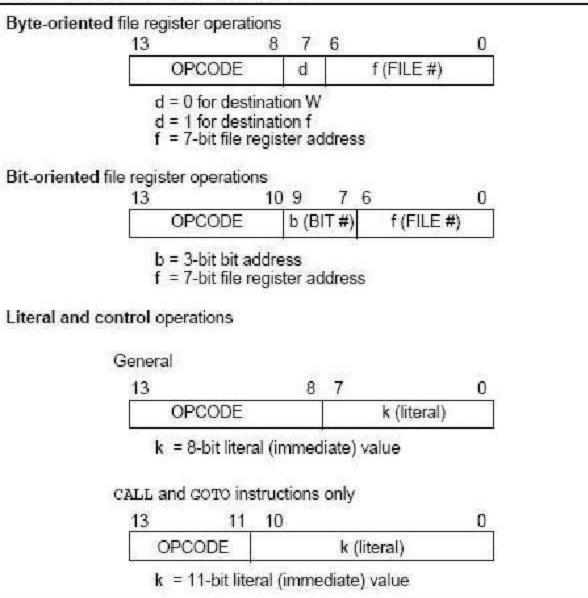
Instruction Type	Definition	Examples
MOVE	The contents of a register are copied to another.	MOVF, MOVWF, MOVLW
REGISTER	Register operations affect only a single register, and all except CLRW (clear W) operate on file registers.	CLRW, CLRF, DECF, INCF, SWAPF, COMF, RLF, RRF, BCF, BSF
ARITHMETIC	Addition and subtraction in binary gives the same result as in decimal or hex	ADDWF, ADDLW, SUBWF, SUBLW
LOGIC	Logic operations are carried out on bit pairs in two numbers to give the result which would be obtained if they were fed to the corresponding logic gate	ANDWF, ANDLW, IORWF, IORLW, XORWF, XORLW
TEST, SKIP & JUMP	make decisions (conditional program branches) which depend on some input condition or the result of a calculation	BTFSC, BTFSS, DECFSZ, INCFSZ, GOTO, CALL, RETURN, RETLW, RETFIE
CONTROL		NOP, SLEEP, CLRWDT

1/25/2024

Opcode field description

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
×	Don't care location (= 0 or 1). The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is $d = 1$.
PC	Program Counter
то	Time-out bit
PD	Power-down bit

Source:Microchip, PICmicro™ Mid-Range MCU Family Reference Manual, December 1997 /DS33023A


Basic Categories of Instructions

- There are three basic categories:
 - Byte-Oriented Instruction:
 - F: File Register (or RAM)
 - D: Destination
 - D=0: Destination \rightarrow W
 - − D=1: Destination → File Register
 - Bit-Oriented Instruction:
 - F: Register File where the Bit is located
 - B: Bit Field
 - Literal and Control Operation:
 - K: 8-bit constant

Figure 29-1: General Format for Instructions

PIC16F877A Instruction set

- Some instructions with alternate result destinations. The default destination for the result of an operation is the file register, but the working register W is sometimes an option.
- There are three basic categories:
 - Byte-Oriented Instruction:
 - F: File Register (or RAM)
 - D: Destination
 - D=0: Destination \rightarrow W
 - D=1: Destination \rightarrow File Register
 - Bit-Oriented Instruction:
 - F: Register File where the Bit is located
 - B: Bit Field
 - Literal and Control Operation:
 - K: 8-bit constant

Byte oriented file register Operation

Mnemo	nic,	Description	Status
Operar	nds		Affected
ADDWF	f,d	Add W and f	C,DC,Z
ANDWF	f,d	AND W with f	Z
CLRF	f	Clear f	Z
CLRW	-	Clear W	Z
COMF	f,d	Complement f	Z
DECF	f,d	Decrement f	Z
DECFSZ	f,d	Decrement f, Skip if 0	
INCF	f,d	Increment f	Z
INCFSZ	f,d	Increment f, Skip if 0	
IORWF	f,d	Inclusive OR W with f	Z
MOVF	f,d	Move f	Z
MOVWF	d	Move W to f	
NOP	-	No operation	
RLF	f,d	Rotate Left f through Carry	С
RRF	f,d	Rotate Right f through Carry	С
SUBWF	f,d	Subtract W from f	C,DC,Z
SWAPF	f,d	Swap nibbles in f	1.0.0 × 10 0.000 0.000000
XORWF	f,d	Exclusive OR W with f	Z

Mnemo	onic,	Description	Status
Opera	nds		Affected
BCF	f,b	Bit Clear f	
BSF	$_{\rm f,b}$	Bit Set f	
BTFSC	f,b	Bit Test f, Skip if Clear	
BTFSS	$_{\rm f,b}$	Bit Test f, Skip if Set	

Source:Microchip, Plcmicro™ Mid-Range MCU Family Reference Manual, December 1997 /DS33023A

Literal and Control operations

Mnemo	nic	Description	Status
		Description	
Opera	lds		Affected
ADDLW	k	Add literal and W	C,DC,Z
ANDLW	k	AND literal with W	Z
CALL	k	Call subroutine	
CLRWDT	-	Clear watchdog timer	TO, PD
GOTO	k	Goto address	
IORLW	k	Inclusive OR literal with W	Z
MOVLW	k	Move literal to W	
RETFIE	-	Return from interrupt	
RETLW	k	Return with literal in W	
RETURN	-	Return from subroutine	
SLEEP	-	Clear watchdog timer	TO, PD
SUBLW	k	Subtract W from literal	C,DC,Z
XORLW	k	Exclusive OR literal with W	Z

Source:Microchip, PICmicro[™] Mid-Range MCU Family Reference Manual, December 1997 /DS33023A

ADI

Example 1

Example 2

	ADDWF	Add W and f
DWF	Syntax:	[label] ADDWF f,d
	Operands:	0 ≤ f ≤ 127 d ∈[0,1]
	Operation:	$(W) + (f) \rightarrow (destination)$
	Status Affected:	C, DC, Z
	Description:	Add the contents of the W register
ADDWF FSR, 0 Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0xD9 FSR = 0xC2		with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in reg- ister 'f'.
After Instruction W = 0x17 FSR = 0xC2	ddress (FSR) = 0x20 ddress (FSR) = 0x37	

ANDWF	A	ND W with f		
Syntax:	[label] AN	DWF f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$			
Operation:	(W).AND. (f) \rightarrow destination		
Status Affected:	Z			
Encoding:	00	0101 dfff	ffff	
Description:		egister with registe sult is stored back	r f'. If 'd' is 0 the result is stored in in register 'f'.	the W register. If
Words:	1			
Cycles:	1	Example 1	ANDWF FSR	
			Before Instruction	; 0001 0111 (0x17
			W = 0x17	; 1100 0010 (0xC2
			FSR = 0xC2	;
			After Instruction	; 0000 0010 (0x02
			W = 0x17	
			FSR = 0x02	
		Example 2	ANDWF FSR, 0	
			Before Instruction	; 0001 0111 (0x17
			W = 0×17	; 1100 0010 (0xC2
			FSR = 0xC2	;
			After Instruction	; 0000 0010 (0x02
			W = 0x02	ALCON NO. IN CARLES
			FSR = 0xC2	

INSTITUTIONS

PIC16F877 Architecture/Dr.G.Arthy/EEE/SNSCE

CLRF		Clear f			
Syntax:	[label]	CLRF f			
Operands:	$0 \le f \le 1$	27			
Operation:	$\begin{array}{c} 00h \rightarrow f \\ 1 \rightarrow Z \end{array}$				
Status Affected:	Z				
Encoding:	0.0	0001	lfff	ffff]
Description:	The con	tents of re	egister 'f	are clea	red and the Z bit is set.
Words:	1				
Cycles:	1				
	[Exam	ple 1		CLRF FLAG_REG
					Before Instruction FLAG_REG=0x5A After Instruction FLAG_REG=0x00 Z = 1

Contact and

	Clear W	
[label] CLRW	
None		
Z		
00	0001 0xxx	xxxx
W regi	ister is cleared. Ze	ro bit (Z) is set.
1		
1	Example 1	CLRW
		Before Instruction
		W = 0
		After Instruction
		W = 0
		Z =
	None 00h → 1 → Z Z 00 W reg 1	[<i>label</i>] CLRW None $00h \rightarrow W$ $1 \rightarrow Z$ Z 00 0001 0xxx W register is cleared. Ze 1

0x5A

0x00

1

COMF		Comple	ement f				
Syntax:	[label]	COMF	f,d				
Operands:	0 ≤ f ≤ 1 d ∈ [0,1]						
Operation:	$(\overline{f}) \to de$	stination					
Status Affected:	z						
Encoding:	00	1001	dfff	ffff			
Description:			-		omplemented. If 'd' is pred back in register		is
Words:	1				Evenue	4	
Cycles:	1				Example	1	
					COMF	REG1	, 0
					Before I	nstructi	on
						REG1=	= 0x13
					After Ins	struction	1
					1	REG1=	
						W =	0xEC
						vv –	UXEC

|--|

DECF	Decrement f	
Syntax:	[label] DECF f,d	
Operands:	0 ≤ f ≤ 127 d ∈ [0,1]	
Operation:	(f) - 1 \rightarrow destination	
Status Affected:	Z	
Encoding:	00 0011 dfff ffff	
Description:	Decrement register 'f. If 'd' is 0 the result is stored result is stored back in register 'f.	in the W register. If 'd' is 1 the
Words:	1	Example 1
Cycles:	1	
		DECF CNT
		Before Instruction
		CNT = 0x01
		Z = 0
		After Instruction
		CNT = 0x00
		Z = 1

DECFSZ	Decrement f, Skip if 0	I		
Syntax:	[label] DECFSZ f,d			
Operands:	0 ≤ f ≤ 127 d ∈ [0,1]			
Operation:	(f) - 1 \rightarrow destination; skip if result	it = 0		
tatus Affected: None				
Encoding: 00 1011 dfff ffff		f		
Manda	If the result is 0, then the next in instruction execution) is discarded ing this a 2 cycle instruction.	ed and a NOP is ex	ecuted instea	d, mak-
Words: Cycles:	1 1(2)	Case 1:	Before Inst PC = CNT = After Instru	 address HERE 0x01
Example			CNT =	= 0x00
C=04,84			PC =	address CONTINUE
HEF	E DECFSZ CNT, 1			truction
	and the standards	Case 2:	Before Inst	
201	GOTO LOOP	Case 2:	PC = CNT =	 address HERE 0x02
CON	and the standards	Case 2:	PC CNT = After Instru	 address HERE 0x02 action
CON	GOTO LOOP	Case 2:	PC CNT After Instru CNT	 address HERE 0x02 action

INSTITUTIO

PIC16F877 Architecture/Dr.G.Arthy/EEE/SNSCE