

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

ARM-Registers

Dr.G.Arthy
Assistant Professor
Department of EEE
SNS College of Engineering

ARE YOU USING THIS?

REGISTERS

- ARM processors have 37 registers.
- The registers are arranged in partially overlapping banks.
- There is a different register bank for each processor mode.
- The banked registers give rapid context switching for dealing with processor exceptions and privileged operations.

REGISTERS

- Thirty general-purpose registers (32 bit each)
- The Program Counter (PC)
- The Application Program Status Register (APSR)
- Saved Program Status Registers (SPSRs).
- Current Program Status Registers (CPSRs).

ARM-OPERATING MODES

Mode Privilegeo		Purpose		
User	No	Normal operating mode for most programs (tasks)		
Fast Interrupt (FIQ)	Yes	Used to handle a high-priority (fast) interrupt		
Interrupt (IRQ)	Yes	Used to handle a low-priority (normal) interrupt		
Supervisor	Yes	Used when the processor is reset, and to handle the softwa interrupt instruction swi		
Abort	Yes	Used to handle memory access violations		
Undefined	Yes	Used to handle undefined or unimplemented instructions		
System	Yes	Uses the same registers as User mode		

Table 1: ARM Processor Operating Modes

EXECUTION MODES

- A privileged execution has access to all resources.
- Unprivileged execution limits or excludes access to some resources.

REGISTERS

Privileged Modes

Exception Modes

User	System	Supervisor	Abort	Undefined	Interrupt	Fast interrupt
r0	r0	r0	r0	r0	r0	10
r1	r1	orl.	rI	21	rI	rI
r2	r2	12	r2	12	72	12
r3	r3	13	13	13	13	13
r4	r4	14	r4	14	r4	r4
r5	r5	15	15	15	V5	15
r6	r6	16	r6	16	rifo .	16
r7	r7	- 17	77	r7	77	r7:
r8	r8	78	25	r8	18	r8_fiq
r9	r9	79	19	19	19	r9_fiq
r10	r10	rIO	r10	r10	rIO	r10_fiq
r11	r11	rH	rH	F11	rH	r11_fiq
r12	r12	r12	r12	r12	r12	r12_fiq
r13 sp	r13 sp	r13_svc	r13_abt	r13_und	r13_irq	r13_fiq
r14 lr	r14 lr	r14_svc	r14_abt	r14_und	r14_irq	r14_fiq
r15 pc	r15 pc	r15 pc	r15 pc	r15 pc	r15 pc	r15 pc
cpsr	cpsr	CDSF	cpsr	cpsr	cpsr	cpsr
_	_	spsr_svc	spsr_abt	spsr_und	spsr_irq	spsr_fiq

Banked register

LINK REGISTER

- r14 or lr In user mode, used as a link register to store the return address when a subroutine call is made.
- r14 or lr In exception mode, lr holds the return address for the exception, or a subroutine return address if subroutine calls are executed within an exception.

PROGRAM COUNTERS

- Program Counter is accessed as pc (or r15).
- It is incremented by one word (four bytes) for each instruction.

•

Branch instructions load the destination address into pc.

Application Program Status Register (APSR)

- APSR holds copies of the Arithmetic Logic Unit (ALU) status flags.
- They are used to determine whether conditional instructions are executed or not.

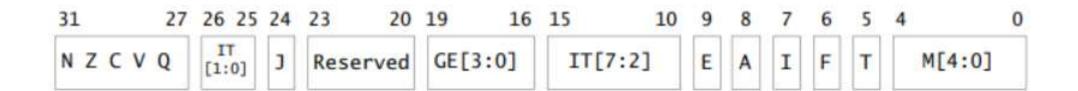
Saved Program Status Registers (SPSRs)

• The SPSRs are used to store the CPSR when an exception is taken.

 User mode and System mode do not have an SPSR because they are not exception handling modes.

Current Program Status Register (CPSR)

The CPSR holds:


- The APSR flags
- The current processor mode
- Interrupt disable flags
- · Current processor state (ARM, Thumb, or Jazelle)

Current Program Status Register (CPSR)

- CPSR to monitor and control internal operations.
- The CPSR is a dedicated 32-bit register and resides in the register file.

Current Program Status Register (CPSR)

27 26 25 24 23

NZCVQ

16 15

IT[7:2]

Reserved GE[3:0]

M[4:0]

- N Negative result from ALU.
- Z Zero result from ALU.
- C ALU operation Carry out.
- V ALU operation oVerflowed.
- Q cumulative saturation (also described as sticky).
- J indicates whether the core is in Jazelle state.
- GE used by some SIMD instructions.
- IT [7:2] If-Then conditional execution of Thumb-2 instruction groups.
- E bit controls load/store endianness.
- A bit disables asynchronous aborts.
- I bit disables IRQ.
- F bit disables FIQ.
- T bit indicates whether the core is in Thumb state.
- • M[4:0] specifies the processor mode

EXCEPTIONS

