SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

An Autonomous Institution

Accredited by NBA - AICTE and Accredited by NAAC - UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Loading Constants, Conditional execution

Dr.G.Arthy

Assistant Professor
Department of EEE

SNS College of Engineering

9/29/2023 Unit IV/Dr.G.Arthy/EEE/SNSCE

LITTITITIONS

9/29/2023

Instruction Set

Instruction Type Definition Examples
MOVE The contents of a register are MOVF, MOVWEF,
copied to another. MOVLW

REGISTER Register operations affect only CLRW, CLRF, DECF,
a single register, and all except | INCF, SWAPF, COMF,
CLRW (clear W) operate on file | RLF, RRF, BCF, BSF
registers.

ARITHMETIC Addition and subtraction in ADDWF, ADDLW,
binary gives the same result as SUBWF, SUBLW
in decimal or hex. .

LOGIC Logic operations are carried out | ANDWF, ANDLW,

on bit pairs in two numbers to
give the result which would be
obtained if they were fed to the
corresponding logic gate

IORWF, IORLW, XORWEF,
XORLW

TEST, SKIP &
JUMP

make decisions (conditional
program branches) which
depend on some input condition
or the result of a calculation

BTFSC, BTFSS, DECFSZ,
INCFSZ, GOTO, CALL,
RETURN, RETLW, RETFIE

CONTROL

NOP, SLEEP, CLRWDT

CLEETITUTIONS

L B

~

Turionss

» There is no ARM instruction to move a 32-bit constant into a register.

» Since ARM instructions are 32 bits in size, they obviously cannot specify a general
32-bit constant.
» To aid programming there are two pseudo instructions to move a 32-bit value into
a register.
» Here are the various loading constants
» Load constant pseudo instruction LDR
» Load address pseudo instruction ADR

9/29/2023 PIC16F877 Architecture/Dr.G.Arthy/EEE/SNSCE

. 5 e
Loading constants OE

LDR - Load constant pseudo instruction
» Syntax: LDR Rd, = constant
» Looad constant pseudo instruction writes a 32-bit constant to a register using

whatever instructions are available.

» [t defaults to a memory read if the constant cannot be encoded usi»~ ~thor

instructions.

» Rd <= 32 - bit constant

» Example: LDR r0, =0xff

9/29/2023 PIC16F877 Architecture/Dr.G.Arthy /EEE/SNSCE

: 55 2
Loading constants o

“Example: Loading the constant 0xffOOffff using an MVN..

»MVN r0, #0x00ff0000

Table 2: Before and after exécution of MVN instruction

______PRE_______ POST

None r0 = 0xffOOffff

9/29/2023 PIC16F877 Architecture/Dr.G.Arthy/EEE/SNSCE

Loading constants A

'ADR - Load address pseudo instruction
» Syntax: ADR Rd, label
» Load address pseudo instruction writes a relative address into a register, which

will be encoded using a pc-relative expression.

»Rd <= 32 - bit relative address

»ADR instruction, or address relative instruction places the addres

of the given label into register Rd, using a pc-relative add or subtr:

9/29/2023 PIC16F877 Architecture/Dr.G.Arthy /EEE/SNSCE

CONDITIONAL EXECUTION S'S

T TIONS

»Most ARM instructions are conditionally executed.
» The instruction only executes if the condition code flags pass a given condition or test.
» By using conditional execution instructions, the performance and code density

can be increased.

v

» Conditional execution reduces the number of branches, which als«
reduces the number of pipeline flushes and thus improves the

performance of the executed code.

9/29/2023 PIC16F877 Architecture/Dr.G.Arthy /EEE/SNSCE

9/29/2023

CONDITIONAL EXECUTION

» Conditional execution depends upon two components:
» Condition field

» Condition flags

» Example: ADD instruction with the EQ condition appended.
» This instruction will only be executed when the zero flag in

CPSR is set to 1.
ADDEQ 0, r1, r2

PIC16F877 Architecture/Dr.G.Arthy /EEE/SNSCE

FIrorionss

The condition field is located in the
instruction, and
the condition flags are located in

the CPSR.

the

9/29/2023

CONDITIONAL EXECUTION

CMP RO,R1

BLT .Lsmaller @ if RO<R1 jump over

MOV R2,R1 @ R1lislessthan or equal to RO
B .Lend @ finish

.Lsmaller:

MOV R2,R0 @ ROislessthanR1

.Lend:

|

CMP RO,R1
MOVGE R2,R1 @ R1isless than or equal to R1
MOVLT R2,R0 @ RO isless than R1

PIC16F877 Architecture/Dr.G.Arthy /EEE/SNSCE

CLTSTITUTION S

.

CONDITIONAL EXECUTION ~

FIrorionss

Add instruction Condition
ADDEQ r3, r2, rl | Add if EQual

ADDNE r3, r2, rl | Add if Not Equal

ADDHS r3, r2, rl | Add if unsigned Higher or Same
ADDLO r3, r2, rl | Add if unsigned LOwer

ADDMI r3, r2, rl | Add if Minus (Negative)

ADDPL r3, r2, rl | Add if PLus (Positive or Zero)
ADDVS r3, r2, rl | Add if oVerflow Set

ADDVC r3, r2, rl | Add if oVerflow Clear

ADDHI r3, r2, rl | Add if unsigned HIgher

ADDLS r3, r2, rl | Add if unsigned Lower or Same
ADDGE r3, r2, rl | Add if signed Greater or Equal
ADDLT r3, r2, rl | Add if signed Less Than

ADDGT r3, r2, rl | Add if signed Greater Than
ADDLE r3, r2, rl | Add if signed Less than or Equal

9/29/2023 PIC16F877 Architecture/Dr.G.Arthy /EEE/SNSCE

THUMB INSTRUCTIONS S S

CLEETITUTIONS

2 Thumb is:

(O a compressed, 16-bit representation of a subset of the ARM
Instruction set

— primarily to increase code density
— also increases performance in some cases

2 It is not a complete architecture

Q all "'Thumb-aware’ cores also support the ARM instruction set

— therefore the Thumb architecture need only support common
functions

9/29/2023 PIC16F877 Architecture/Dr.G.Arthy /EEE/SNSCE

THUMB BIT

313029 28 21] 654 0
|N|Z|C|V| unused |I|Fﬁ| mode |

a The "T'" bit in the CPSR controls the interpretation of
the instruction stream

O switch from ARM to Thumb (and back) by executing BX
Instruction

O exceptions also cause switch to ARM code

— return symmetrically to ARM or Thumb code

O Note: do not change the T bit with MSRI!

9/29/2023 PIC16F877 Architecture/Dr.G.Arthy /EEE/SNSCE

Thumb Branch Instructions

15 1211 8 1 0

1101| cond 8-bit offset (1) B<cond> <label>
15 1211 0

17171700 11-bit offset (2) B <label>

15 121110 0

1T111H 11-bit offset (3) BL <label>

15 1211 165 32 0

|0‘IOOO1‘I10‘H‘ OOOI (4) BX Rm

9/29/2023 PIC16F877 Architecture/Dr.G.Arthy /EEE/SNSCE

ARM AND THUMB INSTRUCTION SET

FIrorionss

9/29/2023

ARM (cpsr T=0)

Thumb (cpsr T=1)

Instruction size

Core instructions

Conditional execution

Data processing
instructions

Program status register

Register usage

d

32-bit

OJ‘
o0

most

access to barrel shifter and
ALU

read-write in privileged mode

15 general-purpose registers

+pc

16-bit

30

only branch instructions

separate barrel shifter and
ALU instructions

no direct access

8 general-purpose registers
+7 high registers +pc

PIC16F877 Architecture/Dr.G.Arthy /EEE/SNSCE

Thumb Branch Instruction

2 These are similar to ARM instructions except:

O offsets are scaled to half-word, not word
O range is reduced to fit into 16 bits

O BL works in two stages:

H=0: LR := PC + signextend (offset << 12)

H=17 PC := LR <% (eoffset << 1)
LR := oldPC + 3

O the assembler generates both halves

O LR bit[0] is set to facilitate return via BX

9/29/2023 PIC16F877 Architecture/Dr.G.Arthy /EEE/SNSCE

9/29/2023

Thumb - ARM

instruction mapping

15

121110

8 1

0

‘always'’ {

A A

A

/

condition

|0 01 | op |Rd/Rﬂ| Imm8 I ADD Rd, #imm8

Y

Y

I [57 GIERE 2 minor opcode destination
format 3: MOV/ denoti P ADD q Zero immediate
cMp/ADD/SUB | €Y and sourcel 1 opift value
with immediate & set CC register
Vo T o
31 28 27 26 25 24 212019 1615 12 11 8 1
1T1T10/00{1(/01T00(1(0 Rd |0 Rd |0000O Imma8

PIC16F877 Architecture/Dr.G.Arthy /EEE/SNSCE

CLETrITUTION S

9/29/2023

THUMB APPLICATIONS

2 Thumb code properties:

O 70% of the size of ARM code

— 30% less external memory power
— 40% more instructions

QO With 32-bit memory:

— ARM code is 40% faster than Thumb code
O With 16-bit memory:

— Thumb code is 45% faster than ARM code

PIC16F877 Architecture/Dr.G.Arthy /EEE/SNSCE

;,

I rIonls

Thumb Applications S ¢

I rIonls

2 For the best performance:
O use 32-bit memory and ARM code
21 For best cost and power-efficiency:
O use 16-bit memory and Thumb code
2 In a typical embedded system:

O use ARM code in 32-bit on-chip memory for small speed-
critical routines

O use Thumb code in 16-bit off-chip memory for large non-
critical control routines

9/29/2023 PIC16F877 Architecture/Dr.G.Arthy /EEE/SNSCE

rrorionss

9/29/2023 PIC16F877 Architecture/Dr.G.Arthy /EEE/SNSCE

