

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

ARM-History & Architecture

Dr.G.Arthy Assistant Professor Department of EEE SNS College of Engineering

ARE YOU USING THIS?

Introduction to ARM

- ARM, which stands for Advanced RISC Machines
- Has a significant history in the development of microprocessors.
- Especially in the mobile and embedded systems markets.

1980s:

• Foundation: ARM was founded in 1990 as a joint venture between Acorn Computers, Apple, and VLSI Technology.

• Acorn RISC Machine: The ARM architecture originated from Acorn Computers' research project to create a new processor for their Archimedes personal computer. The project resulted in the ARM1 processor, which was a 32-bit RISC (Reduced Instruction Set Computing) design.

• Expansion: ARM gained popularity due to its power efficiency and performance. Companies like Apple, DEC, and Texas Instruments started using ARM processors in their products.

• ARM6 and ARM7: These iterations brought improvements in performance and efficiency, leading to widespread adoption in various devices beyond computers.

2000s:

- Smartphones and Mobile Devices: ARM processors became dominant in the mobile device market. The ARM architecture's energy efficiency suited the needs of portable devices well.
- **ARM Cortex-A Series:** Introduced in 2005, this series aimed at higher performance and expanded the ARM architecture's reach into higher-end applications, including smartphones.
- Cortex-M and Cortex-R Series: These were introduced for microcontroller and real-time embedded applications, respectively, widening ARM's presence in various sectors.

- **Growth and Diversification:** ARM's influence continued to grow across various industries, including automotive, IoT (Internet of Things), and servers.
- **ARMv8-A Architecture:** This introduced support for 64-bit computing, expanding ARM's capabilities into the high-performance computing market.
- Acquisition by SoftBank: In 2016, SoftBank acquired ARM Holdings, sparking discussions about the potential impact on ARM's open licensing model and future developments.
- **Partnerships and Licensing:** ARM expanded its partnerships, allowing other companies to license and customize its designs, leading to a wide array of ARM-based processors tailored for specific applications.

2020s till 2023:

• **Continued Evolution:** ARM maintained its position as a dominant force in mobile and embedded processors while making strides in other domains, such as edge computing, AI, and automotive technology.

Features of ARM

- Load/store architecture
- Single-cycle execution
- Energy efficiency
- Scalability
- Customization and Licensing
- Multicore Support
- Architecture Variants
- Support for 32-bit and 64-bit Computing
- Adaptability to Various Operating Systems
- Reliability and Security

ARM ARCHITECTURE

Exception Modes

User	System	Supervisor	Abort	Undefined	Interrupt	Fast interrupt
r0	r0	r0	r0	r0	r0	rO
rl	rl	- rl	-rI	rl	$-i\hat{I}$	rl
r2	r2	12	r2	12	r2	12
r3	r3	13	13	13	13	13
r4	r4	14	r4	14	r4	r4.
r5	r5	15	15	r5	15	15
r6	r6	16	10	16	rő -	r6
r7	r7	r7	r7	17	r7	r7
r8	r8	18	18	r8	18	r8_fiq
r9	r9	19	19	19	19	r9_fiq
r10	r10	r10	r10	r10	r10	r10_fiq
r11	r11	r11	rH	- EL1	rH	r11_fiq
r12	r12	r12	r12	r12	r12	r12_fiq
r13 sp	r13 sp	r13_svc	r13_abt	r13_und	r13_irq	r13_fiq
r14 lr	r14 lr	r14_svc	r14_abt	r14 und	r14_irg	r14_fiq
r15 pc	r15 pc	r15 pc	r15 pc	r15 pc	r15 pc	r15 pc
cpsr	cpsr	CPSP	cpsr	cpsr	cpsr	cpsr
	-	spsr_svc	spsr_abt	spsr_und	spsr_irq	spsr_fiq

Banked register

ADVANTAGES OF ARM

- Low Power Consumption
- Better Battery life
- Work Faster ARM performs single operation at a time
- Lower latency that is quicker response time.
- Multiprocessing feature

ASSESSMENT

1) What is the function of Barrel Shifter?

2)What is a RISC machine?

