

SNS COLLEGE OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

19EE101 - BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

Dr.G.Arthy ASSISTANT PROFESSOR DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

UNIT V LINEAR AND DIGITAL ELECTRONICS

Ideal OP-AMP characteristics, Inverting and Non-inverting Amplifiers, Applications: summer, clipper and clamper Boolean Algebra-Theorems-Logic Gates - Half Adder and Full Adders -Flip flops, A/D and D/A Conversion (Any one concent)

A/D and D/A Conversion (Any one concept)

- **Boolean Algebra** is **used to** analyze and simplify the digital (logic) circuits.
- It **uses** only the binary numbers i.e. 0 and 1. It is also called as Binary **Algebra** or logical **Algebra**.

Laws and Theorems

Boundness law:	A + 1 = 1	$A \bullet 0 = 0$
Identity law:	A + 0 = A	$A \bullet 1 = 1$
Idempotent Theorem:	A + A = A	$A \bullet A = A$
Involution Theorem:	(A')' = A	
Theorem of complementarity:	A + A' = 1	$A \bullet A' = 0$
Commutative law:	A + B = B + A	AB = BA
Associative law:	A + (B + C) = (A + B) + C	A(BC) = (AB)C
Distributive law:	A (B + C) = AB + AC	A + BC = (A+B)(A+C)
DeMorgan's Theorem:	(A + B)' = A'B'	(AB)' = A' + B'
Absorption law:	A + AB = A	A(A+B) = A
Consensus Theorem:	AB+BC+A'C = AB+A'C	(A+B)(B+C)(A'+C) = (A+B)(A'+C)

CS 3402--Digital Logic

Boolean Algebra

9

Logic Gates

- Logic gates are the basic building blocks of any digital system.
- It is an electronic circuit having one or more than one input and only one output.
- A truth table is a table showing the outputs for all possible combinations of inputs to a logic gate or circuit.
- When putting values into a truth table, we often write them as 1 or 0.
- These values are interchangeable with True and False: 1 is True, and 0 is False.

- The NOT operation flips a value to its opposite.
- If an input A has the value True, NOT A has the value False.

• The AND operation only produces a True output if both inputs are True.

2 - input AND gate

А	В	Output
0	0	0
0	1	0
1	0	0
1	1	1

- OR is True when any input is True any one single input or both.
- + is the symbol used to represent OR in a Boolean expression.

2 Input OR Gate

INF	PUTS	OUTPUT
X Y		Z
0 0		0
0 1		1
1 0		1
1 1		1

• To create a NAND gate, an AND gate is combined with a NOT gate.

Q = A NAND B

Truth Table

Input A	Input B	Output Q
0	0	1
0	1	1
1	0	1
1	1	0

To create a NOR gate, an OR gate is combined with a NOT gate.

NOR GATE

T	TRUTH TABLE			
INP	UT	OUTPUT		
А	в	A NOR B		
0	0	1		
0	1	0		
1	0	0		
1	1	0		

ProjectloT123.com

- XOR or 'exclusive OR' is defined as being True when one input or the other is True, but **not when both are true**.

Exclusive-NOR gate

Α	в	Output
0	0	1
0	1	0
1	0	0
1	1	1

Equivalent gate circuit

Combinational Vs Sequential Circuit

Adder, Subtractor Decoder, Encoder Multiplexer, and De-multiplexer

Flip Flops Counters

Combinational Vs Sequential Circuit

1)	The outputs of the combinational circuit depend only on the present inputs.	The outputs of the sequential circuits depend on both present inputs and present state(previous output).
2)	The feedback path is not present in the combinational circuit.	The feedback path is present in the sequential circuits.
3)	In combinational circuits, memory elements are not required.	In the sequential circuit, memory elements play an important role and require.
4)	The clock signal is not required for combinational circuits.	The clock signal is required for sequential circuits.
5)	The combinational circuit is simple to design.	It is not simple to design a sequential circuit.

HALF ADDER

- A **half adder** is an **adder** which adds two binary digits together, resulting in a sum and a carry.
- Because this **adder** can only be used to add two binary digits, it cannot form a part of an **adder** circuit that can add two n-bit binary numbers.

FULL ADDER

- adds three inputs and produces two outputs
- eight inputs together to create a byte-wide **adder** and cascade the carry bit from one **adder** to the another.

Inputs		Outputs		
A	В	Cin	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- A circuit that has two stable states is treated as a **flip flop**.
- Flip-flops and latches are used as data storage elements.
- A flip-flop is a device which stores a single <u>*bit*</u> (binary digit) of data; one of its two states represents a "one" and the other represents a "zero".

SR flip-flop D flip-flop JK flip-flop T flip-flop

• the most common flip flop used in the digital system.

S	R	Q	STATE		
0	0	PREVIOUS STATE	NO CHANGE		
0	1	0	RESET		
1	0	1	SET		
1	1	?	FORBIDDEN		

- JK Flip Flop
- The <u>IK flip flop</u> is used to remove the drawback of the S-R flip flop, i.e., undefined states.
- formed by doing modification in the SR flip flop.

INPUT		OUTPUT	STATE	
CLK	J	K	Q	
Not 1	x	x	QPREV	Previous
+	0	0	No Change	Previous
t	0	1	1	Reset
1	1	0	0	Set
t	1	1	QPREV	Toggle

T Flip Flop

- only a single input
- to avoid an intermediate state occurrence.

Innut	Outputs			
input	Present State	Next State		
Т	Qn	Q _{n+1}		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

- connect the inverter between the Set and Reset inputs
- most important flip flop from other clocked types.
- ensures that at the same time, both the inputs, i.e., S and R, are never equal to 1.

DI	D Flip Flop			
Input	Input Output			
D	Q	Q^		
0	0	1		
1	1	0		

Operational Amplifier

- It is an integrated circuit that can amplify weak electric signals.
- has two input pins and one output pin.
- basic role is to amplify and output the voltage difference between the two input pins.

Pin configuration

(b)

Ideal Op-Amp

- Infinite Input Resistance
- Zero Output Impedance
- Infinite Open-loop Gain
- Infinite Common-mode Rejection Ratio
- Infinite Bandwidth

Inverting Amplifier

two very important rules to remember about **Inverting Amplifiers** or any operational amplifier

No Current Flows into the Input Terminals
The Differential Input Voltage is Zero as V1 = V2 = 0 (Virtual Earth)

$$Gain(Av) = \frac{V_{out}}{V_{in}} = -\frac{R_f}{R_{in}}$$

The negative sign in the equation indicates an inversion of the output signal with respect to the input as it is 180° out of phase.

This is due to the feedback being negative value.

Non Inverting Amplifier

- virtual earth node, the resistors, R*f* and R2 form a simple potential divider network across the non-inverting amplifier
- voltage gain of the circuit can be determined by the ratios of R2 and Rf

$$\mathbf{V}_1 = \frac{\mathbf{R}_2}{\mathbf{R}_2 + \mathbf{R}_F} \times \mathbf{V}_{\mathrm{OUT}}$$

Ideal Summing Point: $V_1 = V_{IN}$

Voltage Gain,
$$A_{(V)}$$
 is equal to: $\frac{V_{OUT}}{V_{IN}}$

Then,
$$A_{(V)} = \frac{V_{OUT}}{V_{IN}} = \frac{R_2 + R_F}{R_2}$$

Transpose to give:
$$A_{(V)} = \frac{V_{OUT}}{V_{IN}} = 1 + \frac{R_F}{R_2}$$

Op-Amp Application- Summing Amplifier

the output voltage, (Vout) now becomes proportional to the sum of the input voltages, V_1, V_2, V_3 , etc. the original equation for the inverting amplifier can be modified as:

used to combine the voltages present on two or more inputs into a single output voltage.

$$I_{F} = I_{1} + I_{2} + I_{3} = -\left[\frac{V1}{Rin} + \frac{V2}{Rin} + \frac{V3}{Rin}\right]$$

Inverting Equation: Vout =
$$-\frac{Rf}{Rin} \times Vin$$

then, -Vout =
$$\left[\frac{R_{\rm F}}{\rm Rin}V1 + \frac{R_{\rm F}}{\rm Rin}V2 + \frac{R_{\rm F}}{\rm Rin}V3\right]$$

$$\begin{bmatrix} F \\ n \end{bmatrix} = \begin{bmatrix} \frac{K_F}{Rin} \\ \frac{K_F}{Rin} \end{bmatrix}$$

-Vout =
$$\frac{R_F}{R_{IN}} (V1 + V2 + V3...etc)$$

Op-Amp Application-

Op-Amp Application-Clipper

Wave shaping circuits are the electronic circuits, which produce the desired shape at the output from the applied input wave form. These circuits perform two functions –

•Attenuate the applied wave

•Alter the dc level of the applied wave.

There are two types of wave shaping circuits: **Clippers** and **Clampers**.

Op-Amp Application-Clipper

- an electronic circuit that produces an output by removing a part of the input above or below a reference value.
- the output of a clipper will be same as that of the input for other than the clipped part.
- The main advantage of clippers is that they eliminate the unwanted noise present in the amplitude of an ac signal.
- Clippers can be classified into the following two types based on the clipping portion of the input.
 - •Positive Clipper
 - •Negative Clipper

Positive Clipper

Op-Amp Application-Clampers

- an electronic circuit that produces an output, which is similar to the input but with a shift in the DC level.
- In other words, the output of a clamper is an exact replica of the input.
- peak to peak amplitude of the output of a clamper will be always equal to that of the input.
- Clampers are used to introduce or restore the DC level of input signal at the output.
- two types of op-amp based clampers
 - •Positive Clamper
 - •Negative Clamper

Op-Amp Application-

Positive Clamper

A positive clamper is a clamper circuit that produces an output in such a way that the input signal gets shifted vertically by a positive DC value.

Op-Amp Application-

Negative Clamper

A **negative clamper** is a clamper circuit that produces an output in such a way that the input signal gets shifted vertically by a negative DC value.

A/Digital and D/A Converter

There are two methods to convert digital to analog

- Weighted Summing Amplifier
- R-2R Network Approach

Weighted Summing Amplifiers

Weighted Resistor DAC

Advantages:

- It is Simple in Construction.
- It provides fast conversion.

Disadvantages:

• requires large range of resistors with necessary high precision for low resistors.

- Can be expensive.
- Hence resolution is limited to 8-bit size.

R-2R Network

$$\mathbf{v_{out}} = \frac{\mathbf{R_f}}{\mathbf{R}} \mathbf{V_{ref}} \left[\frac{\mathbf{D_0}}{16} + \frac{\mathbf{D_1}}{8} + \frac{\mathbf{D_2}}{4} + \frac{\mathbf{D_3}}{2} \right]$$

Advantages:

- Only two resistor values are used in R-2R ladder type.
- It does not need as precision resistors as Binary weighted DACs.
- It is cheap and easy to manufacture.

Disadvantages:

- It has slower conversion rate. For N bit DAC:
- Number of different levels = 2^N
- Number of Steps = $2^{N} 1$
- Resolution or step size of DAC = Analog output/Number of steps = $Va/(2^{N} - 1)$
- % Resolution = (Step Size/Full scale output) x 100 %

A/D Conversion

There are three types of analog to digital conversions

- Digital-Ramp ADC
- Successive Approximation ADC
- Flash ADC

- (SAR), DAC and comparator.
- The output of SAR is given to n-bit DAC.

- The equivalent analog output voltage of DAC, VD is applied to the non-inverting input of the comparator.
- The second input to the comparator is the unknown analog input voltage VA.
- The output of the comparator is used to activate the successive approximation logic of SAR.
- When the start command is applied, the SAR sets the MSB to logic 1 and other bits are made logic 0, so that the trial code becomes 1000.

SAR ADC

- most widely used and popular ADC
- conversion time is maintained constant and is proportional to the number of bits in the digital output
- unknown analog input voltage is approximated against an n-bit digital value by trying one bit at a time, beginning with the MSB.
- operates by successively dividing the voltage range by half,
- The MSB is initially set to 1 with the remaining three bits set as 000.
- The digital equivalent voltage is compared with the unknown analog input voltage.
- If the analog input voltage is higher than the digital equivalent voltage, the MSB is retained as 1 and the second MSB is set to 1.
- Otherwise, the MSB is set to 0 and the second MSB is set to 1.
- Comparison is made as given in step (1) to decide whether to retain or reset the second MSB.

SAR ADC

Let us assume that the 4-bit ADC is used and the analog input voltage is VA = 11 V.

when the conversion starts, the MSB bit is set to 1.

Now VA = 11V > VD = 8V = [1000]2

the MSB is retained as 1 and the next MSB bit is set to 1 as follows

VD = 12V = [1100]2

```
Now VA = 11V < VD = 12V = [1100]2
```

Here now, the unknown analog input voltage VA is lower than the equivalent digital voltage VD. the second MSB is set to 0 and next MSB set to 1 as VD = 10V = [1010]2Now again VA = 11V > VD = 10V = [1010]2 VA>VD, hence the third MSB is retained to 1 and the last bit is set to 1.

The new code word is

VD = 11V = [1011]2

Now finally VA = VD , and the conversion stops.

Advantages:

1 Conversion time is very small. 2 Conversion time is constant and independent of the amplitude of the analog input signal VA.

Disadvantages:

1 Circuit is complex. 2 The conversion time is more compared to flash type ADC.

FLASH ADC

- Also called the *parallel* A/D converter,
- simplest to understand.
- formed of a series of comparators, each one comparing the input signal to a unique reference voltage.
- The comparator outputs connect to the inputs of a priority <u>encoder</u> circuit, which then produces a binary output.
- The following illustration shows a 3-bit flash ADC circuit:

FLASH ADC

- V_{ref} is a stable reference voltage provided by a precision <u>voltage regulator</u> as part of the converter circuit, not shown in the schematic.
- As the analog input voltage exceeds the reference voltage at each <u>comparator</u>, the comparator outputs will sequentially saturate to a high state.
- The priority encoder generates a binary number based on the highest-order active input, ignoring all other active inputs.

FLASH ADC

Advantages:

- Very Fast .
- Very simple operational theory .
- Speed is only limited by gate and comparator propagation delay .

Disadvantages:

- Expensive.
- Each additional bit of resolution requires twice the comparators.
- Prone to produce glitches in the output

Digital Ramp ADC

stairstep-ramp, or simply counter A/D converter

Digital Ramp ADC

- As the counter counts up with each clock pulse, the DAC outputs a slightly higher (more positive) voltage.
- This voltage is compared against the input voltage by the comparator.
- If the input voltage is greater than the DAC output, the comparator's output will be high and the counter will continue counting normally.
- Eventually, though, the DAC output will exceed the input voltage, causing the comparator's output to go low.
- This will cause two things to happen:
- first, the high-to-low transition of the comparator's output will cause the shift register to "load" whatever binary count is being output by the counter, thus updating the ADC circuit's output;
- secondly, the counter will receive a low signal on the active-low LOAD input, causing it to reset to 0000000 on the next clock pulse.

THANK YOU

