SNS COLLEGE OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

19EE101-BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

Dr.G.Arthy
ASSISTANT PROFESSOR
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

UNIT V LINEAR AND DIGITAL ELECTRONICS

Ideal OP-AMP characteristics, Inverting and Non-inverting Amplifiers, Applications: summer, clipper and clamper
Boolean Algebra-Theorems-Logic Gates - Half Adder and Full Adders Flip flops,
A/D and D/A Conversion (Any one concept)

Boolean Algebra

- Boolean Algebra is used to analyze and simplify the digital (logic) circuits.
- It uses only the binary numbers i.e. 0 and 1. It is also called as Binary Algebra or logical Algebra.

Laws and Theorems

Boundness law:
Identity law:
Idempotent Theorem:
Involution Theorem:
Theorem of complementarity:
Commutative law:
Associative law:
Distributive law:
DeMorgan's Theorem:
Absorption law:
Consensus Theorem:

$$
A+1=1
$$

$$
A+0=A
$$

$$
A+A=A
$$

$$
(A)^{\prime}=A
$$

$$
A+A^{\prime}=1
$$

$$
A+B=B+A
$$

$$
A+(B+C)=(A+B)+C
$$

$$
A(B+C)=A B+A C
$$

$$
(A+B)^{\prime}=A^{\prime} B^{\prime}
$$

$$
A+A B=A
$$

$$
A B+B C+A^{\prime} C=A B+A^{\prime} C
$$

$$
\begin{aligned}
& A \bullet 0=0 \\
& A \bullet 1=1 \\
& A \bullet A=A \\
& A \bullet A^{\prime}=0 \\
& A B=B A \\
& A(B C)=(A B) C \\
& A+B C=(A+B)(A+C) \\
& (A B)^{\prime}=A^{\prime}+B^{\prime} \\
& A(A+B)=A \\
& (A+B)(B+C)\left(A^{\prime}+C\right)=(A+B)\left(A^{\prime}+C\right)
\end{aligned}
$$

Logic Gates

- Logic gates are the basic building blocks of any digital system.
- It is an electronic circuit having one or more than one input and only one output.
- A truth table is a table showing the outputs for all possible combinations of inputs to a logic gate or circuit.
- When putting values into a truth table, we often write them as 1 or 0.
- These values are interchangeable with True and False: 1 is True, and 0 is False.

NOT Gate

- The NOT operation flips a value to its opposite.
- If an input A has the value True, NOT A has the value False.

Input	Output
A	Y
0	1
1	0

AND Gate

- The AND operation only produces a True output if both inputs are True.

$$
2 \text { - input AND gate }
$$

A	B	Output
0	0	0
0	1	0
1	0	0
1	1	1

OR Gate

- OR is True when any input is True - any one single input or both.
- + is the symbol used to represent OR in a Boolean expression.

2 Input OR Gate
TRUTH TABLE

INPUTS		OUTPUT
X	Y	Z
0	0	0
0	1	1
1	0	1
1	1	1

NAND GATE

- To create a NAND gate, an AND gate is combined with a NOT gate.

Q = A NANO B
Truth Table

Input A	Input 8	Output Q
0	0	1
0	1	1
1	0	1
1	1	0

NOR Gate

To create a NOR gate, an OR gate is combined with a NOT gate.

NOR GATE

TRUTH TABL		
INPUT		OUTPUT
A	B	A NOR B
0	0	1
0	1	0
1	0	0
1	1	0

XOR Gate

- XOR or 'exclusive OR' is defined as being True when one input or the other is True, but not when both are true.
- \oplus is the symbol used to represent XOR in a Boolean expression.

Input		Output
A	B	
0	0	0
0	1	1
1	0	1
1	1	0

Exclusive-NOR gate

A	B	Output
O	O	1
O	1	O
1	O	O
1	1	1

Equivalent gate circuit

Combinational Vs Sequential Circuit

Block diagram of a combinational circuit

Adder, Subtractor Decoder, Encoder
Multiplexer, and De-multiplexer

Flip Flops Counters

Combinational Vs Sequential Circuit

1) The outputs of the combinational The outputs of the sequential circuits
circuit depend only on the depend on both present inputs and present inputs. present state(previous output).
2) The feedback path is not present The feedback path is present in the
in the combinational circuit. sequential circuits.
3) In combinational circuits, In the sequential circuit, memory memory elements are not elements play an important role and required. require. required. require.
4) The clock signal is not required The clock signal is required for for combinational circuits. sequential circuits.
5) The combinational circuit is It is not simple to design a sequential simple to design. circuit.

HALF ADDER

- A half adder is an adder which adds two binary digits together, resulting in a sum and a carry.
- Because this adder can only be used to add two binary digits, it cannot form a part of an adder circuit that can add two n-bit binary numbers.

A	B	Sum	Carry
$\mathbf{0}$	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

FULL ADDER

- adds three inputs and produces two outputs
- eight inputs together to create a byte-wide adder and cascade the carry bit from one adder to the another.

Inputs			Outputs	
A	B	$\mathbf{C}_{\text {in }}$	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

FLIP FLOP

- A circuit that has two stable states is treated as a flip flop.
- Flip-flops and latches are used as data storage elements.
- A flip-flop is a device which stores a single bit (binary digit) of data; one of its two states represents a "one" and the other represents a "zero".

```
SR
flip-flop
D
flip-flop
JK
flip-flop
T
flip-flop
```


SR Flip Flop

- the most common flip flop used in the digital system.

\mathbf{S}	\mathbf{R}	\mathbf{Q}	STATE
0	0	PREVIOUS STATE	NO CHANGE
0	1	0	RESET
1	0	1	SET
1	1	$?$	FORBIDDEN

JK Flip Flop

- The \coprod K flip flop is used to remove the drawback of the S-R flip flop, i.e., undefined states.
- formed by doing modification in the SR flip flop.

INPUT			OUTPUT	STATE
CLK	J	K	Q	
Not^{\uparrow}	X	X	Qrpey	Previous
4	0	0	No Change	Previous
4	0	1	1	Reset
4	1	0	0	Set
4	1	1	Qppey	Toggle

T Flip Flop

- only a single input
- to avoid an intermediate state occurrence.

Input	Outputs	
	Present State	Next State
\mathbf{T}	$\mathbf{Q}_{\mathbf{n}}$	$\mathbf{Q}_{\mathbf{n}+\mathbf{1}}$
0	0	0
0	1	1
1	0	1
1	1	0

D Flip Flop

- connect the inverter between the Set and Reset inputs
- most important flip flop from other clocked types.
- ensures that at the same time, both the inputs, i.e., S and R, are never equal to 1 .

D Flip Flop		
Input	Output	
D	Q	Q^{\wedge}
0	0	1
1	1	0

Operational Amplifier

- It is an integrated circuit that can amplify weak electric signals.
- has two input pins and one output pin.
- basic role is to amplify and output the voltage difference between the two input pins.

Pin configuration

(a)

(b)

(c)

Ideal 0p-Amp

- Infinite Input Resistance
- Zero Output Impedance
- Infinite Open-loop Gain
- Infinite Common-mode Rejection Ratio
- Infinite Bandwidth

Inverting Amplifier

two very important rules to remember about Inverting Amplifiers or any operational amplifier

- No Current Flows into the Input Terminals
-The Differential Input Voltage is Zero as V1 = V2 = 0 (Virtual Earth)

The negative sign in the equation indicates an inversion of the output signal with respect to the input as it is 180° out of phase.
This is due to the feedback being negative value.

Non Inverting Amplifier

- virtual earth node, the resistors, $\mathrm{R} f$ and R 2 form a simple potential divider network across the non-inverting amplifier
- voltage gain of the circuit can be determined by the ratios of R 2 and $\mathrm{R} f$

$$
V_{1}=\frac{R_{2}}{R_{2}+R_{F}} \times V_{\text {OUT }}
$$

Ideal Summing Point: $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{IN}}$
Voltage Gain, $A_{(V)}$ is equal to: $\frac{V_{\text {OUT }}}{V_{\text {IN }}}$
Then, $A_{(V)}=\frac{V_{\mathrm{OUT}}}{V_{\mathrm{IN}}}=\frac{\mathrm{R}_{2}+\mathrm{R}_{\mathrm{F}}}{\mathrm{R}_{2}}$
Transpose to give: $A_{(V)}=\frac{V_{\text {OUT }}}{V_{\mathrm{IN}}}=1+\frac{\mathrm{R}_{\mathrm{F}}}{\mathrm{R}_{2}}$

Op-Amp Application- Summing Amplifier

the output voltage, (Vout) now becomes proportional to the sum of the input voltages, $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$, etc.
the original equation for the inverting amplifier can be modified as:
used to combine the voltages present on two or more inputs into a single output voltage.

$$
\begin{align*}
& \mathrm{I}_{\mathrm{F}}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}=-\left[\frac{\mathrm{V} 1}{\text { Rin }}+\frac{\mathrm{V} 2}{\text { Rin }}+\frac{\mathrm{V} 3}{\text { Rin }}\right] \\
& \text { Inverting Equation: Vout }=-\frac{\mathrm{Rf}}{\text { Rin }} \times \mathrm{V} \text { in } \\
& \text { then, }- \text { Vout }=\left[\frac{\mathrm{R}_{\mathrm{F}}}{\text { Rin }} \mathrm{V} 1+\frac{\mathrm{R}_{\mathrm{F}}}{\text { Rin }} \mathrm{V} 2+\frac{\mathrm{R}_{\mathrm{F}}}{\text { Rin }} \mathrm{V} 3\right] \\
& - \text { Vout }=\frac{\mathrm{R}_{\mathrm{F}}}{\mathrm{R}_{\mathrm{IN}}}(\mathrm{~V} 1+\mathrm{V} 2+\mathrm{V} 3 \ldots \text { etc })
\end{align*}
$$

Op-Amp Application-

Op-Amp Application-Clipper

Wave shaping circuits are the electronic circuits, which produce the desired shape at the output from the applied input wave form. These circuits perform two functions -

- Attenuate the applied wave
-Alter the dc level of the applied wave.

There are two types of wave shaping circuits:
Clippers and
Clampers.

Op-Amp Application-Clipper

- an electronic circuit that produces an output by removing a part of the input above or below a reference value.
- the output of a clipper will be same as that of the input for other than the clipped part.
- The main advantage of clippers is that they eliminate the unwanted noise present in the amplitude of an ac signal.
- Clippers can be classified into the following two types based on the clipping portion of the input.
-Positive Clipper
- Negative Clipper

Op-Amp Application-

Positive Clipper

Negative Clipper

'/os. SHE

Op-Amp Application-Clampers

- an electronic circuit that produces an output, which is similar to the input but with a shift in the DC level.
- In other words, the output of a clamper is an exact replica of the input.
- peak to peak amplitude of the output of a clamper will be always equal to that of the input.
- Clampers are used to introduce or restore the DC level of input signal at the output.
- two types of op-amp based clampers
-Positive Clamper
-Negative Clamper

Op-Amp Application-

Positive Clamper
A positive clamper is a clamper circuit that produces an output in such a way that the input signal gets shifted vertically by a positive DC value.

Op-Amp Application-

Negative Clamper
A negative clamper is a clamper circuit that produces an output in such a way that the input signal gets shifted vertically by a negative DC value.

A/Digital and D/A Converter

D/A Converter

There are two methods to convert digital to analog

- Weighted Summing Amplifier
- R-2R Network Approach

Weighted Summing Amplifiers

Disadvantages:

- requires large range of resistors with necessary high precision for low resistors.
Advantages:
- It is Simple in Construction.
- It provides fast conversion.

Digitally controlled electronic switches

Weighted Resistor DAC

- Can be expensive.
- Hence resolution is limited to 8-bit size.

R-2R Network

Disadvantages:

- It has slower conversion rate.

For N bit DAC:

- Number of different levels $=2^{\mathrm{N}}$
- Number of Steps $=2^{\mathrm{N}}-1$

Resolution or step size of DAC = Analog
output/Number of steps $=\mathrm{Va} /\left(2^{\mathrm{N}}-1\right)$
\% Resolution $=($ Step Size/Full scale output $) \times 100 \%$

$$
\mathrm{V}_{\text {out }}=\frac{\mathrm{R}_{\mathbf{f}}}{\mathrm{R}} \mathrm{~V}_{\text {ref }}\left[\frac{\mathrm{D}_{0}}{16}+\frac{\mathrm{D}_{1}}{8}+\frac{\mathrm{D}_{2}}{4}+\frac{\mathrm{D}_{3}}{2}\right]
$$

Advantages:

- Only two resistor values are used in R-2R ladder type.
- It does not need as precision resistors as Binary weighted DACs.
- It is cheap and easy to manufacture.

A/D Conversion

There are three types of analog to digital conversions

- Digital-Ramp ADC
- Successive Approximation ADC
- Flash ADC

SAR ADC

- (SAR), DAC and comparator.
- The output of SAR is given to n-bit DAC.

- The equivalent analog output voltage of $\mathrm{DAC}, \mathrm{VD}$ is applied to the non-inverting input of the comparator.
- The second input to the comparator is the unknown analog input voltage VA.
- The output of the comparator is used to activate the successive approximation logic of SAR.
- When the start command is applied, the SAR sets the MSB to logic 1 and other bits are made logic 0 , so that the trial code becomes 1000 .

SAR ADC

- most widely used and popular ADC
- conversion time is maintained constant and is proportional to the number of bits in the digital output
- unknown analog input voltage is approximated against an n-bit digital value by trying one bit at a time, beginning with the MSB.
- operates by successively dividing the voltage range by half,
- The MSB is initially set to 1 with the remaining three bits set as 000 .
- The digital equivalent voltage is compared with the unknown analog input voltage.
- If the analog input voltage is higher than the digital equivalent voltage, the MSB is retained as 1 and the second MSB is set to 1 .
- Otherwise, the MSB is set to 0 and the second MSB is set to 1 .
- Comparison is made as given in step (1) to decide whether to retain or reset the second MSB.

SAR ADC

- Let us assume that the 4-bit ADC is used and the analog input voltage is
$V A=11 \mathrm{~V}$.
when the conversion starts, the MSB bit is set to 1 .
Now VA $=11 \mathrm{~V}>\mathrm{VD}=8 \mathrm{~V}=[1000] 2$
the MSB is retained as 1 and the next MSB bit is set to 1 as follows
$\mathrm{VD}=12 \mathrm{~V}=[1100] 2$
Now VA $=11 \mathrm{~V}<\mathrm{VD}=12 \mathrm{~V}=[1100] 2$
Here now, the unknown analog input voltage VA is lower than the equivalent digital voltage VD. the second MSB is set to 0 and next MSB set to 1 as
$\mathrm{VD}=10 \mathrm{~V}=[1010] 2$
Now again $\mathrm{VA}=11 \mathrm{~V}>\mathrm{VD}=10 \mathrm{~V}=[1010] 2$
$\mathrm{VA}>\mathrm{VD}$, hence the third MSB is retained to 1 and the last bit is set to 1 .
The new code word is
$\mathrm{VD}=11 \mathrm{~V}=[1011] 2$
Now finally VA = VD , and the conversion stops.

SAR ADC

Advantages:

1 Conversion time is very small.
2 Conversion time is constant and independent of the amplitude of the analog input signal VA.

Disadvantages:

1 Circuit is complex.
2 The conversion time is more compared to flash type ADC.

FLASH ADC

- Also called the parallel A/D converter,
- simplest to understand.
- formed of a series of comparators, each one comparing the input signal to a unique reference voltage.
- The comparator outputs connect to the inputs of a priority encoder circuit, which then produces a binary output.
- The following illustration shows a 3-bit flash ADC circuit:

FLASH ADC

- $\mathrm{V}_{\text {ref }}$ is a stable reference voltage provided by a precision voltage regulator as part of the converter circuit, not shown in the schematic.
- As the analog input voltage exceeds the reference voltage at each comparator, the comparator outputs will sequentially saturate to a high state.
- The priority encoder generates a binary number based on the highest-order active input, ignoring all other active inputs.

FLASH ADC

Advantages:

- Very Fast .
- Very simple operational theory .
- Speed is only limited by gate and comparator propagation delay .

Disadvantages:

- Expensive.
- Each additional bit of resolution requires twice the comparators.
- Prone to produce glitches in the output

Digital Ramp ADC

stairstep-ramp, or simply counter A/D converter

Digital Ramp ADC

- As the counter counts up with each clock pulse, the DAC outputs a slightly higher (more positive) voltage.
- This voltage is compared against the input voltage by the comparator.
- If the input voltage is greater than the DAC output, the comparator's output will be high and the counter will continue counting normally.
- Eventually, though, the DAC output will exceed the input voltage, causing the comparator's output to go low.
- This will cause two things to happen:
- first, the high-to-low transition of the comparator's output will cause the shift register to "load" whatever binary count is being output by the counter, thus updating the ADC circuit's output;
- secondly, the counter will receive a low signal on the active-low LOAD input, causing it to reset to 00000000 on the next clock pulse.

THANK YOU

