Summing Amplifier (Summer or Adder)

Inverting Summing Amplifier

In this circuit, the input signals to be added are applied to the inverting input terminal.

Fig. 18 Inverting summing amplifier (adder) with two inputs
An adder with two inputs is shown in Fig. 18.
From the circuit, the potential at node $\mathrm{B}, V_{B}=0$.
From the concept of virtual ground, the two input terminals are at same potential. Therefore, the potential at node A, $V_{A}=V_{B}=0$.

From the circuit,

$$
\begin{gathered}
I=\frac{V_{1}-V_{A}}{R_{1}}=\frac{V_{1}-0}{R_{1}} \\
\boldsymbol{I}_{\mathbf{1}}=\frac{\boldsymbol{V}_{\mathbf{1}}}{\boldsymbol{R}_{\mathbf{1}}}
\end{gathered}
$$

Similarly,

$$
\begin{gathered}
I_{2}=\frac{V_{2}-V_{A}}{R_{2}}=\frac{V_{2}-0}{R_{2}} \\
\boldsymbol{I}_{\mathbf{2}}=\frac{\boldsymbol{V}_{\mathbf{2}}}{\boldsymbol{R}_{\mathbf{2}}}
\end{gathered}
$$

and

$$
\begin{gathered}
I_{f}=\frac{V_{A}-V_{o}}{R_{f}}=\frac{0-V_{o}}{R_{f}} \\
\boldsymbol{I}_{\boldsymbol{f}}=-\frac{\boldsymbol{V}_{\boldsymbol{o}}}{\boldsymbol{R}_{\boldsymbol{f}}}
\end{gathered}
$$

Now since op-amp input current is zero, I_{1} and I_{2} together pass through R_{f} as I_{f}. That is,

$$
\begin{gathered}
I_{f}=I_{1}+I_{2} \\
-\frac{V_{o}}{R_{f}}=\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}} \\
V=-R\left(\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}\right) \\
V_{o}=-\left(\frac{R_{f}}{R_{1}} V_{1}+\frac{R_{f}}{R_{2}} V_{2}\right)
\end{gathered}
$$

If $R_{1}=R_{2}=R$,

$$
V_{o}=-\frac{R_{f}}{R}\left(V_{1}+V_{2}\right)
$$

If $R_{1}=R_{2}=R_{f}$,

$$
V_{o}=-\left(V_{1}+V_{2}\right)
$$

This shows that the output is the sum of the input signals. The negative sign indicates that the phase is inverted.

Three-Input Adder (Inverting Summing Amplifier)

An adder with three inputs is shown in Fig. 19.

Fig. 19 Inverting summing amplifier (adder) with three inputs
From the circuit, the potential at node B, $V_{B}=0$.
From the concept of virtual ground, the two input terminals are at same potential. Therefore, the potential at node A, $V_{A}=V_{B}=0$.

From the circuit,

$$
\begin{gathered}
I_{1}=\frac{V_{1}-V_{A}}{R_{1}}=\frac{V_{1}-0}{R_{1}} \\
\boldsymbol{I}_{\mathbf{1}}=\frac{\boldsymbol{V}_{\mathbf{1}}}{\boldsymbol{R}_{\mathbf{1}}}
\end{gathered}
$$

Similarly,

$$
\begin{gathered}
I_{2}=\frac{V_{2}-V_{A}}{R_{2}}=\frac{V_{2}-0}{R_{2}} \\
\boldsymbol{I}_{\mathbf{2}}=\frac{\boldsymbol{V}_{2}}{\boldsymbol{R}_{\mathbf{2}}}
\end{gathered}
$$

Also

$$
\begin{gathered}
I_{3}=\frac{V_{3}-V_{A}}{R_{3}}=\frac{V_{3}-0}{R_{3}} \\
\boldsymbol{I}_{3}=\frac{\boldsymbol{V}_{3}}{\boldsymbol{R}_{3}}
\end{gathered}
$$

and

$$
I_{f}=\frac{V_{A}-V_{o}}{R_{f}}=\frac{0-V_{o}}{R_{f}}
$$

$$
I_{f}=-\frac{V_{o}}{R_{f}}
$$

Now since op-amp input current is zero, I_{1}, I_{2} and I_{3} together pass through R_{f} as I_{f}. That is,

$$
\begin{gathered}
I_{f}=I_{1}+I_{2}+I_{3} \\
-\frac{V_{o}}{R_{f}}=\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{3}}{R_{3}} \\
V=-R \quad\left(\frac{V_{1}}{V_{2}}+\frac{V_{3}}{R_{2}}+\frac{-}{R_{3}}\right) \\
o \quad f \quad R_{1} \\
V_{o}=-\left(\frac{R_{f}}{R_{1}} V_{1}+\frac{R_{f}}{R_{2}} V_{2}+\frac{R_{f}}{R_{3}} V_{3}\right)
\end{gathered}
$$

If $R_{1}=R_{2}=R_{3}=R$,

$$
V_{o}=-\frac{R_{f}}{R}\left(V_{1}+V_{2}+V\right)_{3}
$$

If $R_{1}=R_{2}=R_{3}=R_{f}$,

$$
V_{o}=-\left(V_{1}+V_{2}+V_{3}\right)
$$

This shows that the output is the sum of the inputsignals. The negative sign indicates that the phase is inverted.

Non-Inverting Summing Amplifier

In this circuit, the input signals to be added are applied to the non-inverting input terminal. Fig. 20 shows a non-inverting summing amplifier with two inputs.

Fig. 20 Non-inverting summing amplifier
Let the potential at node B be V_{B}.
From the concept of virtual ground, the two input terminals are at same potential. Therefore, the potential at node A, $V_{A}=V_{B}$.

From the circuit,

$$
I_{1}=\frac{V_{1}-V_{B}}{R_{1}}
$$

and

$$
I_{2}=\frac{V_{2}-V_{B}}{R_{2}}
$$

Now since op-amp input current is zero,

$$
\begin{gather*}
I_{1}+I_{2}=0 \\
\therefore \frac{V_{1}-V_{B}}{R_{1}}+\frac{V_{2}-V_{B}}{R_{2}}=0 \\
\frac{V_{1}}{R_{1}}-\frac{V_{B}}{R_{1}}+\frac{V_{2}}{R_{2}}-\frac{V_{B}}{R_{2}}=0 \\
\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}=\frac{V_{B}}{R_{1}}+\frac{V_{B}}{R_{2}} \\
\frac{R_{2} V_{1}+R_{1} V_{2}}{R_{1} R_{2}}=V_{B}\left(\frac{R_{1}+R_{2}}{R_{1} R}\right) \\
V_{B}=\frac{R_{2} V_{1}+R_{1} V_{2}}{R_{1}+R_{2}} \tag{1}
\end{gather*}
$$

At node A,

$$
I=V_{R}^{V_{A}}=\frac{V_{B}}{R} \quad\left(\because V_{A}=V_{B}\right)
$$

and

$$
I_{f}=\frac{V_{o}-V_{A}}{R_{f}}=\frac{V_{o}-v_{B}}{R_{f}}
$$

Now since op-amp input current is zero,

$$
\begin{gather*}
I=I_{f} \\
\frac{V_{B}}{R}=\frac{V_{o}-V_{B}}{R_{f}} \\
\frac{V_{B}}{R}=\frac{V_{o}}{R_{f}}-\frac{V_{B}}{R_{f}} \\
\frac{V_{o}}{R_{f}}=\frac{V_{B}}{R}+\frac{V_{B}}{R_{f}} \\
\frac{V_{o}}{R_{f}}=V_{B}\left(\frac{\kappa+R_{f}}{R R_{f}}\right) \\
V_{o}=V_{B}\binom{R+R_{f}}{R} \tag{2}
\end{gather*}
$$

Substituting Eqn. (1) in (2),

$$
\begin{gathered}
V_{o}=\left(\frac{R_{2} V_{1}+R_{1} V_{2}}{R_{1}+R_{2}}\right)\left(\frac{R+R_{f}}{R}\right) \\
V_{o}=\frac{R_{2}\left(R+R_{f}\right)}{R\left(R_{1}+R\right)_{2}} V_{1}+\frac{R_{1}\left(R+R_{f}\right)}{R\left(R_{1}+R\right)_{2}} V_{2} \\
V_{o}=\frac{R+R_{f}}{2 R}(V+V)_{2}
\end{gathered}
$$

If $R_{1}=R_{2}=R$,

$$
\text { If } R_{1}=R_{2}=R=R_{f},
$$

$$
V_{o}=V_{1}+V_{2}
$$

This shows that the output is the sum of the input signals.

