
1

SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’
Grade Approved by AICTE, New Delhi & Affiliated to Anna University,

Chennai

DEPARTMENT OF ARTIFICIAL
INTELLIGENCE AND DATA SCIENCE

COURSE NAME : 19CS402 - DATABASE
MANAGEMENT SYSTEMS

II YEAR / III SEMESTER

Unit – 5

Storage Devices

P.REVATHI/AP/AIDS

UNIT V

STORAGE & INDEXING

2P.REVATHI/AP/AIDS

MODULE - IV STORAGE & INDEXING 10

Overview of Storage Techniques – file organization -

RAID –Indexing - Types of ordered indices - B & B+ tree

– Hashing - Static & Dynamic Hashing. Query

Processing & Optimization

3P.REVATHI/AP/AIDS

OVERVIEW OF
STORAGE
TECHNIQUES

4P.REVATHI/AP/AIDS

Where our actual

data gets stored

5P.REVATHI/AP/AIDS

DEVICES
To

save

your

data

6P.REVATHI/AP/AIDS

STORAGE

• data in the form of bits, bytes get stored in different storage devices.

• A database system provides an ultimate view of the stored data

• For storing the data, there are different types of storage options available

• These storage types differ from one another as per the speed and

accessibility

7P.REVATHI/AP/AIDS

Primary Memory

Secondary
Memory

Tertiary Memory

High Speed

Low speed
8P.REVATHI/AP/AIDS

PRIMARY MEMORY

• memory storage that is directly accessible to
the CPU

• primary area that offers quick access to the
stored data

• volatile storage - does not permanently store
the data

• CPU's internal memory (registers), fast
memory (cache), and main memory (RAM)
are directly accessible to the CPU, as they
are all placed on the motherboard or CPU
chipset

9P.REVATHI/AP/AIDS

Primary Memory

Main
Memory

Cache

10P.REVATHI/AP/AIDS

MAIN MEMORY

• one that is responsible for operating the data that is available by the

storage medium

• handles each instruction of a computer machine

• can store gigabytes of data on a system but is small enough to carry the

entire database

• Contents of main memory is lost if power failure or system crash occurs

• Storage is limited

11P.REVATHI/AP/AIDS

CACHE MEMORY

• one of the costly storage media and fastest one

• tiny storage media which is maintained by the computer hardware

• database implementors do pay attention to cache effects when designing

query processing data structures and algorithms.

12P.REVATHI/AP/AIDS

13P.REVATHI/AP/AIDS

SECONDARY MEMORY

• storage area that allows the user to save and store data permanently

• does not lose the data due to any power failure or system crash

• not a part of the CPU chipset or motherboard, for example, magnetic disks,

optical disks (DVD, CD, etc.), hard disks, flash drives, and magnetic tapes.

14P.REVATHI/AP/AIDS

Flash
Memory

Magnetic
Disk Storage

15P.REVATHI/AP/AIDS

FLASH MEMORY

• stores data in USB (Universal Serial Bus) keys which are further plugged

into the USB slots of a computer system

• USB keys help transfer data to a computer system

• it is possible to get back the stored data which may be lost due to a power

cut or other reasons

• high performance and is capable of storing large amounts of databases than

the main memory

16P.REVATHI/AP/AIDS

MAGNETIC DISK STORAGE

• online storage media

• used for storing the data for a long time

• capable of storing an entire database

• It is the responsibility of the computer system to make availability of the

data from a disk to the main memory for further accessing

• modified data should be written back to the disk

• does not affect the data due to a system crash or failure, but a disk failure

can easily ruin as well as destroy the stored data

17P.REVATHI/AP/AIDS

TERTIARY MEMORY

• used to store huge volumes of data

• storage type that is external from the computer system

• slowest speed

• Offline storage

• generally used for data backup

18P.REVATHI/AP/AIDS

19P.REVATHI/AP/AIDS

OPTICAL STORAGE

• can store megabytes or gigabytes of data

• Compact Disk (CD) and Digital Video Disk or a DVD are optical storage

devices

20P.REVATHI/AP/AIDS

TAPE STORAGE

• cheapest storage medium than disks

• tapes are used for archiving or backing up the data

• provides slow access to data as it accesses data sequentially from the start

21P.REVATHI/AP/AIDS

High Speed

Low speed

Expensive

Low cost
22P.REVATHI/AP/AIDS

FILE
ORGANIZATION

23P.REVATHI/AP/AIDS

huge amount of data

RDBMS

Files in physical

memory

24P.REVATHI/AP/AIDS

FILE ORGANIZATION

• data is grouped within a table in RDBMS, and each table have related

records

• user can see that the data is stored in form of tables, but in actual this

huge amount of data is stored in physical memory in form of files

What is a File?

A file is named collection of related information that is

recorded on secondary storage such as magnetic disks,

magnetic tables and optical disks

25P.REVATHI/AP/AIDS

FILE ORGANIZATION
• File Organization refers to the logical relationships among various records

that constitute the file, particularly with respect to the means of

identification and access to any specific record.

• refers to the way in which data is stored in a file and, consequently the

methods by which it can be accessed

• In simple terms, Storing the files in certain order is called file Organization.

• Database is stored as a collection of files. Each file is a sequence of records.

A record is a sequence of fields.

One file One Table

One record One Tuple

26P.REVATHI/AP/AIDS

WHY TO ORGANIZE?

• in order to access the contents of the

files – records in the physical

memory, it is not that easy.

• They are not stored as tables there

and our SQL queries will not work.

• We need some accessing methods.

• To access these files, we need to

store them in certain order so that it

will be easy to fetch the records

27P.REVATHI/AP/AIDS

OBJECTIVE OF FILE ORGANIZATION

• Optimal selection of records i.e.; records should be accessed as fast as

possible.

• Any insert, update or delete transaction on records should be easy, quick

and should not harm other records.

• No duplicate records should be induced as a result of insert, update or

delete

• Records should be stored efficiently so that cost of storage is minimal.

28P.REVATHI/AP/AIDS

FILE ORGANIZATION
• Each file is divided into fixed-length storage units known as Blocks. These

blocks are the units of storage allocation as well as data transfer

• Most database use block size of 4 to 8 kilobytes

• Block may contain several records

• Each record is entirely contained in a single block to avoid partial storage of

record in a block

• In RDBMS, the size of tuples varies in different relations. Thus, we need to

structure our files in multiple lengths for implementing the records

• 2 ways

– Fixed length records

– Variable Length Records
29P.REVATHI/AP/AIDS

FIXED LENGTH RECORDS

• setting a length and storing the records into the file

• If the record size exceeds the fixed size, it gets divided into more than one

block

53 bytes for each record

30P.REVATHI/AP/AIDS

FIXED LENGTH RECORDS

• 2 problems

– Unless the block size happens to be a multiple of 53 (which is unlikely), some

records will cross block boundaries. That is, part of the record will be stored in

one block and part in another. It would thus require two block accesses to read

or write such a record.

– It is difficult to delete a record from this structure. The space occupied by the

record to be deleted must be filled with some other record of the file, or we

must have a way of marking deleted records so that they can be ignored.

31P.REVATHI/AP/AIDS

Solution
• allocate only as many records to a block as

would fit entirely in the block
• When record is deleted, move next records to

occupy space of deleted record

insertions tend to be
more

frequent than deletions

Leave the space of

deleted record

which can be used

for next insertion
32P.REVATHI/AP/AIDS

Need a Marker here to find the
space to insert

File Header

At beginning of file,
allocate certain number
of bytes to file header

It stores the address of first empty space of the record

Like Pointers?

deleted records thus form a linked list

On insertion of a new record,
we use the record pointed to

by the header.

If no space is available, we
add the new record to the

end of the file.

Yes

33P.REVATHI/AP/AIDS

VARIABLE LENGTH RECORDS

• records that vary in size

• requires the creation of multiple blocks of multiple sizes to store them

• Arise in database systems in several ways:

– Storage of multiple record types in a file.

– Record types that allow variable lengths for one or more fields.

– Record types that allow repeating fields, such as arrays or multisets.

• 2 problems exists:

– Defining the way of representing a single record so as to extract the individual

attributes easily.

– Defining the way of storing variable-length records within a block so as to

extract that record in a block easily.

34P.REVATHI/AP/AIDS

Variable length

record
Initial Part:

with fixed length

attributes

Followed by:

data for variable-length

attributes
1. numeric values,
2. Dates
3. fixed-length character

attributes

varchar type
represented in the initial

part of the record by
(offset, length) pair

offset - place where that record begins
length - length of the variable-size attribute

Problem 1

35P.REVATHI/AP/AIDS

WAYS TO ORGANIZE THE FILES

File
Organization

Hash

Heap

Clustered
File

System
Sequential

B+ tree

36P.REVATHI/AP/AIDS

HEAP FILE ORGANIZATION

• Simplest file structure

• Contains records in no particular order

• Any record can be placed anywhere in

the file where there is space for the record

• There is a single file for each relation.

• If a data block is full, the new record is

stored in some other block

• records are inserted at the file's end

37P.REVATHI/AP/AIDS

HASH

• uses the computation of hash function on some fields of the records

• hash function's output determines the location of disk block where the

records are to be placed.

• Hashing is a technique to directly search the location of desired data

on the disk without using index structure.

• used to index and retrieve items in a database as it is faster to search

that specific item using the shorter hashed key instead of using its original

value.

38P.REVATHI/AP/AIDS

B+ FILE ORGANIZATION

• uses a tree-like structure to store records in File.

• concept of key-index where the primary key is used to sort the records.

• For each primary key, the value of the index is generated and mapped

with the record

39

 balanced binary search tree. It follows a multi-level

index format.

 Leaf nodes denote actual data pointers

 B+ tree ensures that all leaf nodes remain at the

same height.

 Leaf nodes are linked using a link list.

 A B+ tree can support random access as well as

sequential access.
P.REVATHI/AP/AIDS

CLUSTER FILE

• When two or more records are stored in the same file, it is known as

clusters.

• These files will have two or more tables in the same data block, and

key attributes which are used to map these tables together are stored

only once.

• reduces the cost of searching for various records in different files

• used when there is a frequent need for joining the tables with the same

condition

40P.REVATHI/AP/AIDS

41P.REVATHI/AP/AIDS

SEQUENTIAL
• Records are stored in sequential order

• efficient processing of records in sorted order based on some search key

• search key is any attribute or set of attributes; it need not be the primary key, or

even a super key

• allows records to be read in sorted order

42P.REVATHI/AP/AIDS

For insertion, we apply the following
rules:

1. Locate the record in the file that
comes before the record to be
inserted in search-key order.

2. If there is a free record (that is,
space left after a deletion) within
the same block as this record,
insert the new record there.

3. Otherwise, insert the new record
in an overflow block. In either
case, adjust the pointers so as
to chain together the records in
search-key order.

INSERTION IN SEQUENTIAL FILE

43P.REVATHI/AP/AIDS

2 WAYS

Pile File Method

The records are stored in a sequence i.e one after other in the

order in which they are inserted into the tables.

44P.REVATHI/AP/AIDS

PILE FILE METHOD

P.REVATHI/AP/AIDS 45

Sorted File Method

whenever a new record has to be inserted, it is always inserted in

a sorted (ascending or descending) manner. Sorting of records may be based on
any primary key or any other key.

46P.REVATHI/AP/AIDS

Pros and Cons of Sequential File Organization
Pros –

1. Fast and efficient method for huge amount of data.

2. Simple design.

3. Files can be easily stored in magnetic tapes i.e cheaper storage

mechanism.

Cons –

• Time wastage as we cannot jump on a particular record that is

required, but we have to move in a sequential manner which takes

our time.

• Sorted file method is inefficient as it takes time and space for

sorting records.

47P.REVATHI/AP/AIDS

48P.REVATHI/AP/AIDS

RAID

49P.REVATHI/AP/AIDS

REDUNDANT ARRAY OF INDEPENDENT DISKS
• way of storing the same data in different places on multiple hard disks or

solid-state drives to protect data in the case of a drive failure

• connect multiple secondary storage devices for increased performance,

data redundancy or both

• gives you the ability to survive one or more drive failure depending

upon the RAID level used

• consists of an array of disks in which multiple disks are connected to

achieve different goals

50P.REVATHI/AP/AIDS

• Redundancy Array of the Independent Disk

• technology which is used to connect multiple secondary storage devices for increased

performance, data redundancy or both.

• gives the ability to survive one or more drive failure depending upon the RAID level used.

• It consists of an array of disks in which multiple disks are connected to achieve different goals

• RAID 0, RAID 1, RAID 2,RAID 3,RAID 4,RAID 5, RAID 6

51P.REVATHI/AP/AIDS

• It contains a set of physical disk drives.

• In this technology, the operating system views these separate disks as a single logical disk.

• In this technology, data is distributed across the physical drives of the array.

• Redundancy disk capacity is used to store parity information.

• In case of disk failure, the parity information can be helped to recover the data.

52P.REVATHI/AP/AIDS

WHY REDUNDANCY?

• although taking up extra space, adds to disk reliability

• in case of disk failure, if the same data is also backed up onto another

disk, we can retrieve the data and go on with the operation

• if the data is spread across just multiple disks without the RAID technique,

the loss of a single disk can affect the entire data.

53P.REVATHI/AP/AIDS

MIRRORING

• approach to introduce redundancy is to duplicate every disk . This is

called mirroring

• A logical disk then consists of two physical disks, and every write is carried

out on both disks.

If one of the disks fails, the data can be read from the other.

• Data will be lost only if the second disk fails before the first failed disk is

repaired

54P.REVATHI/AP/AIDS

IMPROVEMENT IN PERFORMANCE VIA
PARALLELISM

• with Disk Mirroring - rate at which read requests can be handled is

doubled, since read requests can be sent to either disk

• we can improve the transfer rate as well (or instead) by striping data

across multiple disks

• data striping consists of splitting the bits of each byte across multiple disks;

such striping is called bit level striping.

• For e.g.,

– if we have an array of eight disks, we write bit i of each byte to disk I

– array of eight disks can be treated as a single disk - eight times the normal size

– eight times the transfer rate

55P.REVATHI/AP/AIDS

IMPROVEMENT IN PERFORMANCE VIA
PARALLELISM

• Block-level striping stripes blocks across multiple disks

• treats the array of disks as a single large disk, and it gives blocks logical

numbers

• array of n disks, block-level striping assigns logical block i of the disk array

to disk (i mod n) + 1

56P.REVATHI/AP/AIDS

57P.REVATHI/AP/AIDS

RAID LEVELS

Mirroring
high

reliability expensive

Striping
Does not

improve high
reliability

high

data-transfer
rates

1. Provides redundancy

2. Lower cost

3. Disk striping with

“parity” bits

RAID

Levels

58P.REVATHI/AP/AIDS

RAID LEVELS – RAID 0

• provides data stripping i.e., a data can place across

multiple disks

• if one disk fails then all data in the array is lost.

• The data is broken down into blocks and the blocks

are distributed among disks

• Each disk receives a block of data to write/read in

parallel

• Doesn't provide fault tolerance but increases the

system performance

59P.REVATHI/AP/AIDS

RAID LEVELS – RAID 0

instead of placing just one block into a disk at a time, we can work with two or
more blocks placed it into a disk before moving on to the next one

there is no duplication of data. Hence, a block once lost cannot be
recovered.

60P.REVATHI/AP/AIDS

61P.REVATHI/AP/AIDS

RAID LEVELS – RAID 1

• This level is called mirroring of data

• copies the data from drive 1 to drive 2

• It provides 100% redundancy in case of a failure

62P.REVATHI/AP/AIDS

RAID LEVELS – RAID 1

Only half space of the drive is used to store the data.

The other half of drive is just a mirror to the already stored data.

63P.REVATHI/AP/AIDS

RAID LEVELS – RAID 2
• RAID 2 records Error Correction Code using Hamming distance for its data,

striped on different disks

• employs parity bits

• Each byte in a memory system may have a parity bit associated with it that records

whether the numbers of bits in the byte that are set to 1 is even (parity = 0) or odd

(parity = 1)

• If one of the bits in the byte gets damaged (either a 1 becomes a 0, or a 0 becomes

a 1), the parity of the byte changes and thus will not match the stored parity

64P.REVATHI/AP/AIDS

RAID LEVELS – RAID 2

65P.REVATHI/AP/AIDS

RAID LEVELS – RAID 3

• RAID 3 stripes the data onto multiple disks

• The parity bit generated for data word is stored on a different disk

• In case of drive failure, the parity drive is accessed, and data is

reconstructed from the remaining devices.

• Once the failed drive is replaced, the missing data can be restored on the

new drive.

66P.REVATHI/AP/AIDS

RAID LEVELS – RAID 3

67P.REVATHI/AP/AIDS

RAID LEVELS – RAID 4
• RAID 4 consists of block-level stripping with a parity disk

• This level allows recovery of at most 1 disk failure due to the way

parity works.

• In this level, if more than one disk fails, then there is no way to recover the

data

68P.REVATHI/AP/AIDS

RAID LEVELS – RAID 5
• RAID 5 is a slight modification of the RAID 4 system.

• The only difference is that in RAID 5, the parity rotates among the drives

• It consists of block-level striping with DISTRIBUTED parity

69P.REVATHI/AP/AIDS

RAID LEVELS – RAID 5

• RAID 5 writes whole data blocks onto different disks, but the parity bits

generated for data block stripe are distributed among all the data disks rather

than storing them on a different dedicated disk.

70P.REVATHI/AP/AIDS

RAID LEVELS – RAID 6
• RAID 6 is an extension of level 5.

• In this level, two independent parities are generated and stored in distributed

fashion among multiple disks.

• Two parities provide additional fault tolerance.

• This level requires at least four disk drives to implement RAID

71P.REVATHI/AP/AIDS

