

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

Topic: 1.5 – CAYLEY HAMILTON THEOREM

Cayley - Hamiton Theorem .
Every Square matrix satisfies its own
Characteristic equation
Uses of Cayley - Hamilton Theorem.
To calculate (i) the positive integral powers of A and
(i) the inverse of a Square matrix A.
Problems.
Verify that
$$A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$$
 satisfies its own characteristic
equation and hence find A^t.
Solu:
Given $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$
The Char equ. of A is $\chi^2 - s_1 \lambda + s_2 = 0$.
Were $S_1 = 1 + (-1) = 0$
 $S_2 = 1A + 1 = -1 - A = -5$
. The Char equ. ts $\lambda^2 - 0\lambda - 5 = 0$
[By c-n. Every square matrix satisfies its own char. equ]
(with prove: $A - 5 = 0 = -\frac{1}{2} = 0$
 $A^2 = A \times A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$

AN AUTONOMOUS INSTITUTION

$$\begin{aligned} & = \begin{bmatrix} 1+h & 2-2 \\ 2-2 & h+n \\ & = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} \\ & = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} - 5\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ & = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} - \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} \\ & = \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix} \\ & = \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix} \\ & = \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix} \\ & = \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix} \\ & = \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix} \\ & = \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix} \\ & = \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix} \\ & = \begin{bmatrix} 25 & 0 \\ 0 & 25 \end{bmatrix} \\ & = \begin{bmatrix} 25 & 0 \\ 0 & 25 \end{bmatrix} \\ & = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} \\ & = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} \\ & = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} \\ & = \begin{bmatrix} 25 & 0 \\ 0 & 25 \end{bmatrix} \\ & = \begin{bmatrix} 25 & 0 \\ 0 & 25 \end{bmatrix} \\ & = \begin{bmatrix} 5 & 0 \\ 0 & 25 \end{bmatrix} \\ & = \begin{bmatrix}$$

AN AUTONOMOUS INSTITUTION

Find
$$A^{T} \forall A = \begin{bmatrix} 1 & + & + \\ 3 & 2 & -1 \\ 2 & 1 & + \end{bmatrix}^{T}$$
 Wring Cayley-Hamilton
Sthere $\begin{bmatrix} 2 & 2 & -1 \\ 2 & 1 & + \end{bmatrix}^{T}$
The Char. equ. of A is $A^{3} - S_{1}x^{2} + S_{2}x^{2} - S_{3} = 0$.
Where $S_{1} = (+2 + 1 = 2)$
 $S_{2} = \begin{bmatrix} 2 & -1 \\ 1 & -1 \end{bmatrix} + \begin{bmatrix} 1 & + \\ 2 & -1 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ 3 & 2 \end{bmatrix}$
 $= \begin{bmatrix} -2 + 1 \\ 1 & + \end{bmatrix} + \begin{bmatrix} 1 & + \\ 2 & -1 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ 3 & 2 \end{bmatrix}$
 $= \begin{bmatrix} -2 + 1 \\ 1 & + \end{bmatrix} + \begin{bmatrix} 1 & + \\ 3 & 2 \end{bmatrix}$
 $= \begin{bmatrix} -2 + 1 \\ 1 & + \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ 3 & 2 \end{bmatrix}$
 $= \begin{bmatrix} -2 + 1 \\ 1 & + \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ 3 & 2 \end{bmatrix}$
 $= \begin{bmatrix} -2 + 1 \\ 1 & + \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ 3 & 2 \end{bmatrix}$
 $= -5$
 $S_{3} = |A| = 1(-2 + 1) + 1(-3 + 2) + H(3 - R)$
 $= -1 + (-9) + 5 / 1$
 $= -5$
 $S_{3} = |A| = 1(-2 + 1) + 1(-3 + 2) + H(3 - R)$
 $= -1 - H = -6$
 \therefore The Chareque is $\lambda^{3} - 2\lambda^{2} - 5\lambda + b = 0$.
Bs Cayley Hamilton Theorem,
Every Square matrix Satisfies its Own chareque.
 $\therefore A^{3} - 2A^{2} - 5A + b = 0$.
To find A^{T}
 $(D \times A^{T} \Rightarrow A^{2} - 2A - 5T + bA^{T} = 0$.

AN AUTONOMOUS INSTITUTION

$$A^{2} - 2A - 5J + 6A^{2} = 0$$

$$6A^{1} = -A^{2} + 2A + 5J$$

$$A^{2} = A \times A = \begin{bmatrix} 1 & -1 & A \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & A \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 - 3 + 8 & -1 - 2 + 4 & A + 1 - A^{2} \\ 3 + 6 - 2 & -3 + A - 1 & 12 - 2 + 1 \\ 2 + 3 - 2 & -2 + 2 - 1 & 8 - 1 + 1 \end{bmatrix}$$

$$= \begin{bmatrix} 6 & 1 & 1 \\ 7 & 0 & 11 \\ 3 & -1 & 8 \end{bmatrix}$$

$$= A^{2} + 2A + 5J = \begin{bmatrix} -6 & -1 & -1 \\ -7 & 0 & -11 \\ -3 & 1 & -8 \end{bmatrix} + \begin{bmatrix} 2 & -2 & 8 \\ 6 & 4 & -2 \\ 4 & 2 & -2 \end{bmatrix} + \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -3 & 4 \\ -1 & 9 & -13 \\ 1 & 3 & -5 \end{bmatrix}$$
From $\emptyset \implies A^{1} = \frac{1}{6} \begin{bmatrix} 1 & -3 & 4 \\ -1 & 9 & -13 \\ 1 & 3 & -5 \end{bmatrix}$

AN AUTONOMOUS INSTITUTION

If
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$$
, find Aⁿ interms of A
Soluring Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$.
The chaineque of A is $\chi^2 - g_1 \chi + g_2 = 0$
where $g_1 = 1 + 2 = 3$
 $g_2 = 1 + 1 = 2 - 0 = 2$
The chaineque is $\chi^2 - g_1 \chi + g_2 = 0$
 $\chi = 1 + 1 = 2 - 0 = 2$
The chaineque is $\chi^2 - g_1 \chi + g_2 = 0$
 $\chi = 2, \lambda = 1$
Hence the Eigenvalues of χ are $1/2$.

AN AUTONOMOUS INSTITUTION

To find Aⁿ
when
$$\lambda^{n}$$
 is divided by $\lambda^{2}-3\lambda+2$.
let the quotient be Q(λ) and remainder be Q λ th
 $\lambda^{n} = (\lambda^{2}-3\lambda+2) \cdot Q(\lambda) + \alpha\lambda + b - -(D)$
when $\lambda = 1$. When $\lambda = 2$.
D= 1ⁿ = a+b $(D=) \cdot 2^{n} = 2a+b$
 $2a+b = 2^{n} - 0$
 $a+b = 1^{n} - 0$
 $a+b = 1^{n} - 0$
solving (a) b((a)) we get
(a) -(3) => $\alpha = 2^{n} - 1^{n}$
(1e) $\alpha = 2^{n} - 1^{n}$
 $(1e) \quad \alpha = 2^{n} - 1^{n}$
Replacency λ^{n} by the matrix A in (D, Aⁿ = (A^{2}-3A+b)Q(A)+QA+b)
By c-H A^{2}-3A+23 = 0.7
 $1 = a^{n} - a^{n} + b^{2}$
 $A^{n} = (\alpha^{n} - 1^{n}) \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix} + \begin{bmatrix} 2(1)^{n} - 2^{n} \\ 0 & 1 \end{bmatrix}$