

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING-IOT Including CS&BCT

COURSE NAME : 19SB504 DATABASE MANAGEMENT SYSTEMS

III YEAR / V SEMESTER

Unit IV- TRANSACTIONS MANAGEMENT Topic : SCHEDULES

24-11-2023

A series of operation from one transaction to another transaction is known as schedule.

It is used to **preserve the order of the operation** in each of the individual transaction.

1. Serial Schedule

The serial schedule is a **type of schedule** where one transaction is **executed completely** before **starting another transaction**.

In the serial schedule, when the first transaction completes its cycle, then the next transaction is executed.

For example: Suppose there are **two transactions T1** and **T2** which have some operations. If it has **no interleaving of operations**, then there are the following two possible outcomes:

1.Execute all the operations of **T1** which was followed by all the operations of **T2**.

2.Execute all the operations of **T2** which was followed by all the operations of **T1**.

Execute all the operations of **T1** which was followed by all the operations of **T2**.

(a)

	T1	T2
Time	<pre>read(A); A := A - N; write(A); read(B); B := B + N; write(B);</pre>	read(A):
		A := A + M
Ļ		write(A);

Schedule A

Execute all the operations of **T2** which was followed by all the operations of **T1**.

(b)

		T1	T2
Time	,	read(A); A:= A - N; write(A); read(B); B:= B +N; write(B);	read(A); A := A + M; write(A);

Schedule B

2. Non-serial Schedule

If **interleaving of operations is allowed**, then there will be non-serial schedule.

It contains many possible orders in which the system can execute the **individual operations** of the transactions.

In the given figure (c) and (d), Schedule C and Schedule D are the non-serial schedules. It has interleaving of operations.

(c)

	T1	T2
	read(A); A:= A $-$ N;	read(A);
Time	write(A); read(B);	A := A + M; write(A);
Ţ	B := B + N; write(B);	

Schedule C

(d) Time T1 T2 T2 read(A); A := A - N; write(A); read(A); A := A + M; write(A); read(A); A := A + M; write(A); read(B); B := B + N; write(B); read(B); read(B);

Schedule D

3.Serializable schedule

The serializability of schedules is used to **find nonserial schedules** that allow the transaction to **execute concurrently without interfering with one another**.

It identifies which schedules are correct when executions of the transaction have interleaving of their operations.

A non-serial schedule will be serializable if its result is equal to the result of its transactions executed serially.

19SB504/DATABASE MANAGEMENT/ SYSTEMS/Mr.R.Kamalakkannan/CSE-IOT/SNSCF

SCHEDULE EQUIVALENCE CONFLICT SERIALIZABILITY

Thank You.....

24-11-2023