

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (PO), Coimbatore - 641 107 Accredited by NAAC-UGC with 'A' Grade Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY COURSE NAME: 19IT301 COMPUTER ORGANIZATION

AND ARCHITECTURE

II YEAR/ III SEM

Unit 3 : Processor and Pipelining

Topic 3.2: Execution of a Complete Instruction –

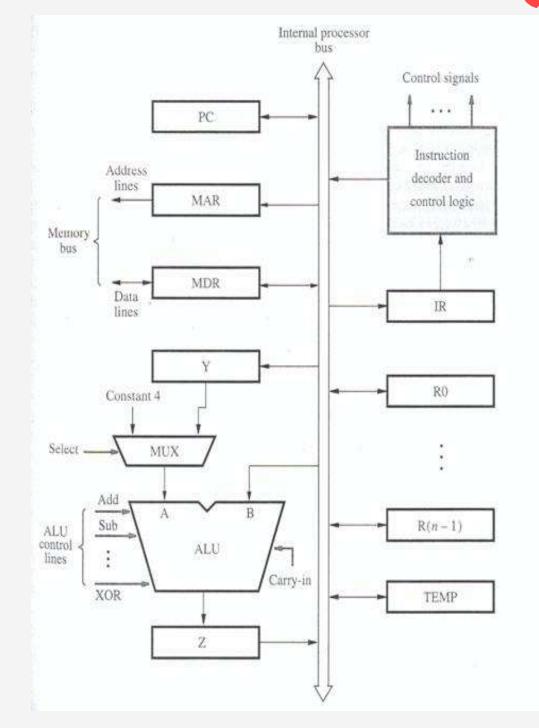
Multiple bus organization

SNSCE / IT / III Sem / V. Vaishnavee AP-IT

11/18/2023

Execution of a Complete Instruction

Sequence of elementary operations to execute Add (R3), R1 requires the following actions:


- Fetch the instruction
- Fetch the first operand (the contents of the memory location) pointed to by R3)
- Perform the addition
- Load the result into R1

Execution of a Complete Instruction

11/18/2023

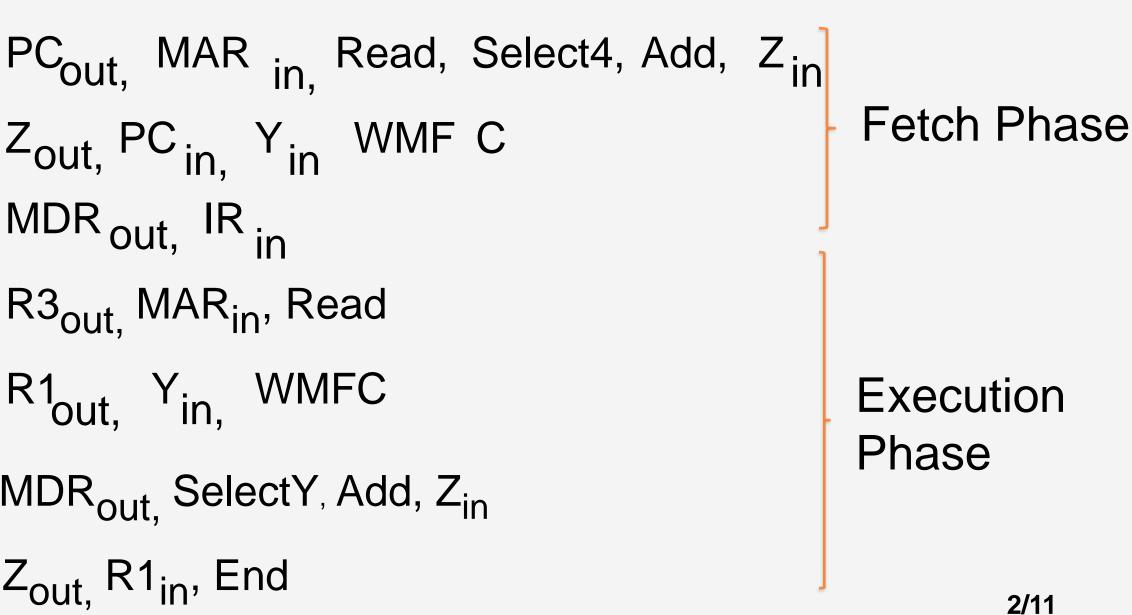
R1 in a single-bus architecture

Step Action

2

4

5


- Zout, PC in, Y in WMF C
- MDR_{out}, IR_{in} 3
 - R3_{out.} MAR_{in}, Read
 - R1_{out.} Y_{in.} WMFC

6 MDR_{out.} SelectY, Add, Z_{in}

Z_{out.} R1_{in}, End 7 **SNSCE / IT / V Sem / V. Vaishnavee AP-IT**

Control Sequence for execution of the instruction Add (R3),

Execution of Branch Instructions

- A branch instruction replaces the contents of PC with the branch target address, which is usually obtained by adding an offset X given in the branch instruction.
- The offset X is usually the difference between the branch target ulletaddress and the address immediately following the branch instruction.
- UnConditional branch ullet

Control sequence for an unconditional branch instruction

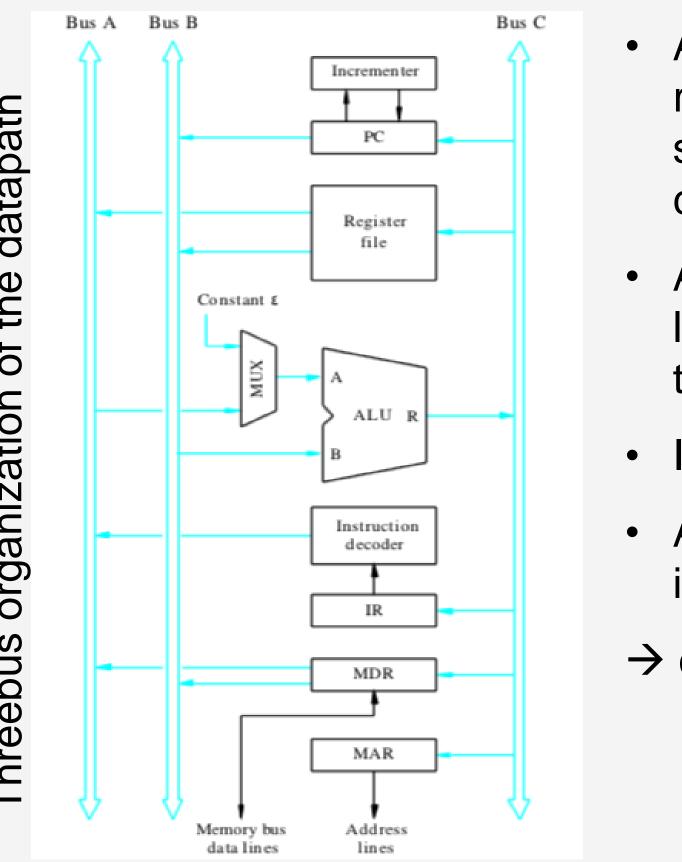
Step Action

1	PC _{out} , MAR in, Read, Select4
2	Z _{out} , PC _{in} , Y _{in} , WMF C
3	MDR _{out} , IR in
4	Offset-field-of-IR _{out} , Add, Z _{il}
5	Z _{out} , PC _{in} , End

PC=2000, Target address=2050 X = 46

SNSCE / IT / V Sem / V. Vaishnavee AP-IT

11/18/2023



4, Add, Z_{in}

n

Multiple-Bus Organization

Threebus organization of the datapath

11/18/2023

- Allow the contents of two different registers to be accessed simultaneously and have their contents placed on buses A and B.
- Allow the data on bus C to be loaded into a third register during the same clock cycle.
- Incrementer unit.
- ALU simply passes one of its two input operands unmodified to bus C
- \rightarrow control signal: R=A or R=B

Multiple-Bus Organization

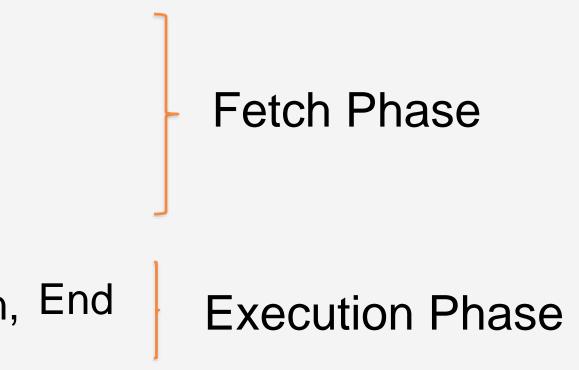
- General purpose registers are combined into a single block called register file.
- Register file has 3 ports, 2 outputs ports –access two different registers and have their contents on buses A and B Third port allows data on bus C during same clock cycle. Buses A & B are used to transfer the source operands to A & B
- inputs of the ALU.
- ALU operation is performed.
- The result is transferred to the destination over the bus C.

Multiple-Bus Organization

- ALU may simply pass one of its 2 input operands unmodified to bus C. •
- The ALU control signals for such an operation R=A or R=B. ullet
- Incrementer unit is used to increment the PC by 4. •
- Using the incrementer eliminates the need to add the constant value 4 ulletto the PC using the main ALU.
- The source for the constant 4 at the ALU input multiplexer can be used lacksquareto increment other memory address such as loadmultiple & storemultiple instructions

11/18/2023

Control sequence for the instruction Add R4,R5,R6, for the three-bus organization


Step Action

- PCout, R=B, MAR in. Read, IncPC 1 2 WMFC
- 3 MDR_{outB}, R=B, IR_{in}
- R4outA, R5outB, SelectA, Add, R6in, End 4

11/18/2023

SNSCE / IT / V Sem / V. Vaishnavee AP-IT

8/11

Explanation

Step 1: The contents of PC are passed through the ALU using R=B control signal & loaded into MAR to start a memory read operation.

At the same time PC is incrementer by 4 Step 2: The processor waits for MFC Step 3: Loads the data , received into MDR, then transfers them to IR.

Step 4: The execution phase of the instruction requires only one control step to complete.

> Advantage: Reduction in the number of clock cycles to execute an instruction

11/18/2023

What is the control sequence for execution of the instruction Add R1, R2 including the instruction fetch phase? (Assume single bus architecture)

11/18/2023

Thank You

11/18/2023

