SNS COLLEGE OF ENGINEERING

Kurumbapalayam (PO), Coimbatore - 641107
Accredited by NAAC-UGC with 'A' Grade
Approved by AICTE, Recognized by UGC \& Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY
 COURSE NAME: 19IT301 COMPUTER ORGANIZATION
 AND ARCHITECTURE

II YEAR/ III SEM
Unit 2 : ARITHMETIC OPERATIONS
Topic 6: Integer Division

11/18/2023

Manual Division

21	10101 Quotient
$1 3 \longdiv { 2 7 4 }$	Divisor $\rightarrow 1 1 0 1 \longdiv { 1 0 0 0 1 0 0 1 0 \longleftarrow }$ Dividend
26	1101
14	10000
13	1101
1	1110
	1101
	$1 \longleftarrow$ Remainder
	and division examples.

Longhand Division Steps

- Position the divisor appropriately with respect to the dividend and performs a subtraction.
- If the remainder is zero or positive, a quotient bit of 1 is determined, the remainder is extended by another bit of the dividend, the divisor is repositioned, and another subtraction is performed.
- If the remainder is negative, a quotient bit of 0 is determined, the dividend is restored by adding back the divisor, and the divisor is repositioned for another subtraction.

Circulit Arrangement

Logic circuit for restoring division

Restoring Division

Algorithm

- Shift A and Q left one binary position
- Perform A - M, and place the answer back in A
- If the sign of A is 1 , set q_{0} to 0 and add M back to A (restore A); otherwise, set q_{0} to 1
- Repeat these steps n times

Restoring division Flowchart

Example: Restoring Division
A Q(Dividend)

Initially	0	0	0	0	0	1	0	0	0
\mathbf{M}	0	0	0	1	1				
Shift	0	0	0	0	1	0	0	0	\square

10
$1 1 \longdiv { 1 0 0 0 }$
11
10
11
10
$\frac{11}{1000}$
$\frac{11}{10}$

Count

First cycle 3

Second cycle

 2Third cycle 1

Fourth cycle 0

Nonrestoring Division

- Avoid the need for restoring A after an unsuccessful subtraction.
- Any idea?

Step 1: (Repeat n times)
> If the sign of A is 0 , shift A and Q left one bit position and subtract M from A; otherwise, shift A and Q left and add M to A.
$>$ Now, if the sign of A is 0 , set q_{0} to 1 ; otherwise, set q_{0} to 0 .
Step2: If the sign of A is 1 , add M to A

Nonrestoring division Flowchart

A nonrestoring-division example
$A \quad$ Q(Dividend)
Add \(\underbrace{\begin{array}{ccccc}1 \& 1 \& 1 \& 1 \& 1

0 \& 0 \& 0 \& 1 \& 1

0 \& 0 \& 0 \& 1 \& 0\end{array}}_{Remainder}\}\)| Restore |
| :---: |
| remainder |

\mathbf{M}	0	0	0	0
Mift	0	0	0	0

$\mathrm{M}=00011$
2's complement of $M=11101$

Division of signed operands

- No simple algorithms for performing division of signed operands Solution
- Transform the operands to positive values, use either restoring or non-restoring algorithm
- Transform the result to correct signed values

Exercise

Compute 27/11 using restoring and non-restoring algorithm

Thank You

