
SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade 
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE 
AND DATA SCIENCE

COURSE NAME : 19CS402 - DATABASE 
MANAGEMENT SYSTEMS

II YEAR / III  SEMESTER

Unit – 2  

Functional Dependencies



• A functional dependency (FD) is a relationship 
between two attributes, typically between the PK 
and other non-key attributes within a table. For 
any relation R, attribute Y is functionally 
dependent on attribute X (usually the PK), if for 
every valid instance of X, that value of X uniquely 
determines the value of Y. This relationship is 
indicated by the representation below :

• X ———–> Y



• The left side of the above FD diagram is called 
the determinant, and the right side is 
the dependent. Here are a few examples.

• In the first example, below, SIN determines 
Name, Address and Birthdate. Given SIN, we 
can determine any of the other attributes 
within the table.

• SIN ———-> Name, Address, Birthdate



• For the second example, SIN and Course 
determine the date completed 
(DateCompleted). This must also work for a 
composite PK.

• SIN, Course ———> DateCompleted

• The third example indicates that ISBN 
determines Title.

• ISBN ———–> Title



• Rules of Functional Dependencies

• Consider the following table of data r(R) of the 
relation schema R(ABCDE) shown in Table 
11.1.

• Table 11.1. Functional dependency example, 
by A. Watt.



• As you look at this table, ask yourself: What kind of dependencies 
can we observe among the attributes in Table R? Since the values of 
A are unique (a1, a2, a3, etc.), it follows from the FD definition that:

• A → B, A → C, A → D, A → E
• It also follows that A →BC (or any other subset of ABCDE).
• This can be summarized as A →BCDE.
• From our understanding of primary keys, A is a primary key.
• Since the values of E are always the same (all e1), it follows that:
• A → E, B → E, C → E, D → E
• However, we cannot generally summarize the above with ABCD → 

E because, in general, A → E, B → E, AB → E.



• Other observations:

• Combinations of BC are unique, therefore BC → ADE.

• Combinations of BD are unique, therefore BD → ACE.

• If C values match, so do D values.
– Therefore, C → D

– However, D values don’t determine C values

– So C does not determine D, and D does not determine C.

• Looking at actual data can help clarify which attributes 
are dependent and which are determinants.



Inference Rules
• The axiom of augmentation, also known as a partial dependency, 

says if X determines Y, then XZ determines YZ for any Z (see Figure 
11.2 ).

• Figure 11.2. Equation for axiom of augmentation.The axiom of 
augmentation says that every non-key attribute must be fully 
dependent on the PK. In the example shown below, StudentName, 
Address, City, Prov, and PC (postal code) are only dependent on the 
StudentNo, not on the StudentNo and Grade.

• StudentNo, Course —> StudentName, Address, City, Prov, PC, 
Grade, DateCompleted

• This situation is not desirable because every non-key attribute has 
to be fully dependent on the PK. In this situation, student 
information is only partially dependent on the PK (StudentNo).



• To fix this problem, we need to break the 
original table down into two as follows:

• Table 1: StudentNo, Course, Grade, 
DateCompleted

• Table 2: StudentNo, StudentName, Address, 
City, Prov, PC

• Axiom of transitivity

• The axiom of transitivity says if X determines Y, 
and Y determines Z, then X must also 
determine Z

Figure 11.3. Equation for axiom of transitivity.

http://opentextbc.ca/dbdesign01/wp-content/uploads/sites/11/2013/12/Ch-11-Axiom-of-transitivity-300x30.jpg
http://opentextbc.ca/dbdesign01/wp-content/uploads/sites/11/2013/12/Ch-11-Axiom-of-transitivity-300x30.jpg


• The table below has information not directly related to the student; 
for instance, ProgramID and ProgramName should have a table of 
its own. ProgramName is not dependent on StudentNo; it’s 
dependent on ProgramID.

• StudentNo —> StudentName, Address, City, Prov, PC, ProgramID, 
ProgramName

• This situation is not desirable because a non-key attribute 
(ProgramName) depends on another non-key attribute 
(ProgramID).

• To fix this problem, we need to break this table into two: one to 
hold information about the student and the other to hold 
information about the program.

• Table 1: StudentNo —> StudentName, Address, City, Prov, PC, 
ProgramID

• Table 2: ProgramID —> ProgramName

• However we still need to leave an FK in the student table so that we 
can identify which program the student is enrolled in.



• Union

• This rule suggests that if two tables are 
separate, and the PK is the same, you may 
want to consider putting them together. It 
states that if X determines Y and X determines 
Z then X must also determine Y and Z (see 
Figure 11.4)



• For example, if:
• SIN —> EmpName
• SIN —> SpouseName
• You may want to join these two tables into one as 

follows:
• SIN –> EmpName, SpouseName
• Some database administrators (DBA) might 

choose to keep these tables separated for a 
couple of reasons. One, each table describes a 
different entity so the entities should be kept 
apart. Two, if SpouseName is to be left NULL 
most of the time, there is no need to include it in 
the same table as EmpName.



• Decomposition

• Decomposition is the reverse of the Union 
rule. If you have a table that appears to 
contain two entities that are determined by 
the same PK, consider breaking them up into 
two tables. This rule states that if X 
determines Y and Z, then X determines Y and 
X determines Z separately (see Figure 11.5).



• Dependency Diagram

• A dependency diagram, shown in Figure 11.6, 
illustrates the various dependencies that 
might exist in a non-normalized table. A non-
normalized table is one that has data 
redundancy in it.



• The following dependencies are identified in this 
table:

• ProjectNo and EmpNo, combined, are the PK.

• Partial Dependencies:
– ProjectNo —> ProjName

– EmpNo —> EmpName, DeptNo,

– ProjectNo, EmpNo —> HrsWork

• Transitive Dependency:
– DeptNo —> DeptName


