Graph Representation

Graph Representation

- Graph consists of a non empty set of points called vertices and a set of edges that link vertices.
Definition: A graph $G=(V, E)$ consists of
- a set $V=\left\{v_{1}, v_{2} \ldots . ., v_{n}\right\}$ of $n>1$ vertices and
- a set of $E=\left\{e_{1}, e_{2}, \ldots . ., e_{m}\right\}$ of $m>0$ edges
- such that each edge e_{k} is corresponds to an un ordered pair of vertices ($\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}$)
- A road network is a simple example of a graph, in which vertices reprents cities and road connecting them are correspond to edges.
- Loop is an edge that connects a vertex to itself. Edge e_{6} in the figure below is a loop.
- Edges with same end vertices are called parallel edges . Edges e_{4} and e_{5} are parallel edges in the below figure

- A Graph without loops and parallel edges is called a simple graph.
- A graphs with isolated vertices (no edges) is called null graph.
- Set of edges \boldsymbol{E} can be empty for a graph but not set of vertices \boldsymbol{V}.

Incidence: if an vertex v_{i} is an end vertex of an edge e_{k}, we say vertex v_{i} is incident on e_{k} and e_{k} is incident on v_{i}.

- e_{1} is incident on v_{1} and v_{3} in the below figure.
- v_{4} is incident on e_{3}, e_{4}, and e_{5} in the figure below

Degree: Degree of an vertex is number of edges incident on it, with loops counted twice.

Basic Operations

- Adjacent Edges: Two non parallel edges are adjacent if they have a vertex in common.
- $\quad e_{1}$ and e_{2}, e_{2} and e_{6}, e_{2} and e_{3}, e_{1} and e_{4} are adjacent edges in the above diagram.
- Adjacent vertices: Two vertices are adjacent if they are connected by an edge.
- v_{1} and v_{3}, v_{1} and v_{2}, v_{2} and v_{4} are adjacent vertices in the above diagram.

Graph Representation

Graph Representation: There are several different ways to represent graphs in a computer. Two main representations are Adjacency Matrix and Adjacency list.

Adjacency Matrix Representation:

- An adjacency matrix of a graph $G=(V, E)$ (let $\left.V=\left\{v_{1}, v_{2} \ldots . ., v_{n}\right\}\right)$ is a $n X$ n matrix A, such that $A[i, j]=1$ if there is edge between v_{i} and v_{j}.
- 0,other wise

	1	2	3	4	5
1	0	1	1	1	0
2	1	0	0	1	0
3	1	0	0	1	1
4	1	1	1	0	1
5	0	0	1	1	0

Adjacency List Representation:

- It consists of a list of vertices, which can be represented either by linked list or array. For each vertex, adjacent vertices are represented in the form of a linked list.

$2 \square \rightarrow v_{1}\left|\rightarrow v_{4}\right|$
$3 \rightarrow\left|v_{1}\right| \rightarrow\left|v_{4}\right| \rightarrow>v_{5} \mid$

$5 \longrightarrow>v_{3}\left|>v_{4}\right|$

