~ ~

S
WITUTIONS

Queue Implementation



WITUTIONS

Queue

= Queue follows the First In First Out(FIFO) rule i.e., the data
item stored first will be accessed first.

" Queue is an abstract data structure
= Unlike stacks, a queue is open at both its ends.

* One end is always used to insert data (enqueue) and the
other is used to remove data (dequeue)

6 November 2023 Queue implementation 2



~ o
S
WLSTITYTIONS

Queue Specifications

v' A queue is an object or more specifically an abstract data
structure(ADT) that allows the following operations:

v' Enqueue: Add element to end of queue

v' Dequeue: Remove element from front of queue

v’ IsEmpty: Check if queue is empty

v" IsFull: Check if queue is full

v’ Peek: Get the value of the front of queue without removing it



a—

N
WITTITUTIONS

» peek() - Gets the element at the front of the
gueue without removing it.

e isfull() - Checks if the queue is full.
* isempty() — Checks if the queue is empty.



a-‘

Enqueue Operation T

WITTITUTIONS

Queues maintain two data pointers, front and rear.

The following steps should be taken to enqueue
(insert) data into a queue : -

Step 1 - Check if the queue is full.

Step 2 - If the queue is full, produce overflow error
and exit.

Step 3 - If the queue is not full, increment rear
pointer to point the next empty space.

Step 4 - Add data element to the queue location,
where the rear is pointing.

Step 5 - return success.



>

Enqueue representation &

Rear Front
D l l |
M ¢ B A before

Rear Front
: 1
i = - A after

Queue Enqueue

6 November 2023 Queue implementation 6



Algorithm for enqueue operation :ﬂi

WITUTIONS

procedure enqueue(data)

if queue is full
return overflow

endif
rear &< rear+ 1
queue[rear] < data
return true

end procedure

6 November 2023 Queue implementation 7



Enqueue

Example
int enqueue(int data)
if(isfull())
return O;
rear =rear + 1;
gueue(rear] = data;
return 1;

6 November 2023 Queue implementation

WITUTIONS



o .

Dequeue Operation S!S

Accessing data from the queue is a process of two tasks
— access the data where front is pointing and remove
the data after access.

Step 1 - Check if the queue is empty.

Step 2 - If the queue is empty, produce underflow
error and exit.

Step 3 - If the queue is not empty, access the data
where front is pointing.

Step 4 - Increment front pointer to point to the next
available data element.

Step 5 - Return success.



6 November 2023

Dequeue reprsentation

before

after

Rear Front
D [0 8 A
Rear Front

! }
dequeue

D C B
Queue \
A

Queue Dequeue

Queue implementation

10



Algorithm for dequeue operation

procedure dequeue

if queue is empty

return underflow

end if
data = queue]front]
front & front + 1

return true

end procedure

6 November 2023 Queue implementation

WITUTIONS

11



~ ﬂ_

Dequeue operation S!S

Example
int dequeue()

{

if(isempty())
return O;

int data = queue[front];
front = front + 1;
return data;

}

6 November 2023 Queue implementation 12



Implementation using C programming :ib‘

WITTITUTIONS

#include<stdio.h>
#define SIZE 5

void enQueue(int);
void deQueue();

void display();

int items[SIZE], front = -1, rear = -1;
int main()

{

//enQueue 5 elements
enQueue(l);
enQueue(2);
enQueue(3);
enQueue(4);
enQueue(5);



display(); -
//deQueue removes element entered first i.e. 1 ~»
de Queue ()’ WETITYTIONS
//Now we have just 4 elements

display();

return 0;

}

void enQueue(int value)

{

if(rear == SIZE-1)
printf("\nQueue is Full!!");

else

{

if(front == -1)

front = 0;

rear++;

items[rear] = value;

printf("\nInserted -> %d", value);

}
}

6 November 2023 Queue implementation 14



void deQueue(){

if(front == -1)
printf("\nQueue is Empty!!");

else{
printf("\nDeleted : %d", items[front]);
front++;
if(front > rear)

front = rear = -1;

6 November 2023 Queue implementation

~ Q.
S
WITUTIONS

15



void display(){
if(rear == -1)
printf("\nQueue is Empty!!!");
else{
inti;
printf("\nQueue elements are:\n");
for(i=front; i<=rear; i++)
printf("%d\t" items]i]);

6 November 2023 Queue implementation

~ Q.
S
WITUTIONS

16



