WITUTIONS

Binary search tree

Lo [-

Binary Search Tree (BST) o' S

A Binary Search Tree (BST) is a tree in which all the nodes
follow the below-mentioned properties :

* The left sub-tree of a node has a key less than or equal to its
parent node's key.

* The right sub-tree of a node has a key greater than to its
parent node's key.

* Thus, BST divides all its sub-trees into two segments; the left
sub-tree and the right sub-tree and can be defined as -

» left_subtree (keys) < node (key) < right_subtree (keys)

Representation S/ S

WITTITUTIONS

 BST is a collection of nodes arranged in a way where they
maintain BST properties.

 Each node has a key and an associated value.

* While searching, the desired key is compared to the keys in
BST and if found, the associated value is retrieved.

* From the figure we identify that left E
subtree values are lesser than root = / \ =

* Theright subtree values are greater / \ 7%
than the root node. < & </ O

~ ~

-

Basic Operations of Binary search tree: e

Following are the basic operations of a tree -

e Search - Searches an element in a tree.

* Insert - Inserts an element in a tree.

* Pre-order Traversal — Traverses a tree in a pre-order manner.

* In-order Traversal — Traverses a tree in an in-order manner.

* Post-order Traversal — Traverses a tree in a post-order manner.

Node

Define a node having some data, references to its left and right child nodes.

struct node

{
int data;

struct node *leftChild;
struct node *rightChild;

5

6 November 2023 Binary search tree 4

Search Operation S/ S

WITTITUTIONS

“*“Whenever an element is to be searched, start searching from the
root node.

 Then if the data is less than the key value, search for the element in
the left subtree.

* Otherwise, search for the element in the right subtree.
Algorithm

struct node* search(int data)

{

struct node *current = root;

printf("Visiting elements: ");

while(current->data != data)

{
if(current != NULL)

{

printf("%d ",current->data);

if(current->data > data)

{

current = current->leftChild;

}

else

{

current = current->rightChild;

}
if(current == NULL)

{
return NULL;
}
}
}

return current;

}

T TIOTTS

6 November 2023 Binary search tree 6

Insert Operation S/ S

WITTITUTIONS

« Whenever an element is to be inserted, first locate its proper
location.

e Start searching from the root node.

* If the datais less than the key value, search for the empty
location in the left subtree and insert the data.

* Otherwise, search for the empty location in the right subtree
and insert the data.

Algorithm

void insert(int data)

{

struct node *tempNode = (struct node*) malloc(sizeof(struct node));

struct node *current;

struct node *parent;

tempNode->data = data;

tempNode->leftChild = NULL; e
tempNode->rightChild = NULL;
if(root == NULL)

{ root = tempNode;

}

else

{

current = root;

parent = NULL;

while(1)

{

parent = current;

if(data < parent->data)

{

current = current->leftChild;
if(current == NULL)

{

parent->leftChild = tempNode;
return;

}
}

LETITUIONS

6 November 2023 Binary search tree 8

LiBrITunons

current = current->rightChild;
if(current == NULL)

{

parent->rightChild = tempNode;
return;

}

—_— e e

6 November 2023 Binary search tree 9

