DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

QUESTION BANK

SUBJECT: 19CS502 – ATCD

SEM/ YEAR: V/ III

UNIT I AUTOMATA FUNDAMENTALS					
Introduct determini	Introduction - Languages: Alphabets and Strings - Finite Automata - Deterministic Finite Automata - Non- deterministic Finite Automata – Equivalence of NFA and DFA – Finite Automata with Epsilon Transitions.				
	PART– A				
Q.No	Questions	BTLevel	Competence		
1.	Differentiate between DFA and NFA.	BTL-2	Understand		
2.	Define DFA.	BTL-1	Remember		
3.	Write the notations of DFA.	BTL-1	Remember		
4.	Identify NFA- store present a*b c.	BTL-1	Remember		
5.	Consider the String X=110 and y=0110.Find i) XY ii) X^2 iii) YX iv)Y ²	BTL-4	Analyze		
6.	Describe the following language over the input set $\sum = \{a,b\}, L=\{a^nb^m n,m>=0\}.$	BTL-4	Analyze		
7.	Describe what is non-deterministic finite automata and the applications of automata theory.	BTL-1	Remember		
8.	Design a NFA which accepts the set of all strings that start with zero.	BTL-3	Apply		
9.	What are the applications of automata theory?	BTL-1	Remember		
10.	Describe an identified with a transition diagram (automata).	BTL-2	Understand		
11.	Define ε-NFA.	BTL-1	Remember		
12.	Summarize the significance of DFA.	BTL-5	Evaluate		
13.	Give the Non-deterministic automata to accept strings containing the substring 0101.	BTL-2	Understand		
14.	Illustrate if L be a set accepted by an NFA then there exists a DFA that accepts L.	BTL-3	Apply		
15.	Define the term epsilon transition.	BTL-2	Understand		
16.	Summarize the extended transition function for a ε -NFA.	BTL-5	Evaluate		

17.	Create a FA which accepts the only input 101 over the input set: $Z=\{0,1\}$	BTL-6	Create
18.	Describe a Finite automaton and give its types.	BTL-4	Analyze
19.	Construct a DFA of strings which accepts string either 01 or 10 over {0, 1}.	BTL-3	Apply
20.	Create a FA which checks whether the given binary number is even.	BTL-6	Create
21.	Give the NFA which accepts the set of all strings that end with zero.	BTL-2	Understand
22.	Solve the deterministic finite automata to accept strings over $\sum = \{0,1\}$ containing three consecutive zeros.	BTL-3	Apply
23.	Analyze a NFA which accepts all strings which accepts all strings starts with "10".	BTL-4	Analyze
24.	Explain on Alphabets and Strings.	BTL-5	Evaluate
	PART-B		
1.	(i) Explain if L is accepted by an NFA with ε -transition hen show that L is accepted by an NFA without ε -transition. (6) (ii) Construct a DFA equivalent to the NFA.M=({p, q, r}, {0,1}, \delta, p, {q, s}). Where δ is defined in the following table (7)		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BTL-5	Evaluate
2.	(i) Design a DFA that recognizes the set of all strings on $\sum = \{a,b\}$ starting with the 'prefix ab' and test using the input string. (6) (ii) Draw a transition diagram for a DFA that accepts the string abaa and no other strings and test using the input string. (7)	BTL-3	Apply
3.	Let L be a set accepted by a NFA then show that there exists a DFA that accepts L. (13)	BTL-1	Remember
4.	Give non-deterministic finite automata accepting the set of strings in $(0+1)^*$ such that two 0's are separated by a string whose length is 4i, for some $i \ge 0.(13)$	BTL-2	Understand
5.	Construct DFA equivalent to the NFA given below: (13)	BTL-2	Understand

6.	(i) Compose that a language L is accepted by some ε -NFA if and only if L is accepted by some DFA.(6) (ii) Consider the following ε -NFA. Compute the ε -closure of each state and find it's equivalent DFA.(7) $\frac{\delta \varepsilon a b C}{\Rightarrow p \varphi \{p\} \{q\} \{r\} \varphi}$ $\frac{q \{p\} \{q\} \{r\} \varphi}{r \{q\} \{r\} \varphi \{p\} \{q\} \{r\} \varphi}$	BTL-6	Create
7.	(i) Classify how a language L is accepted by some DFA if L is accepted by some NFA.(7) (ii) Convert the following NFA to its equivalent DFA. (6) $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	BTL-3	Apply
8.	 (i) Construct the DFA to recognize odd number of 1's and even number 0's. (ii) Construct the DFA over {a,b} which produces not more than 3 a's. (6) 	BTL-1	Remember
9.	(i) Point out the steps in conversion of NFA to DFA and for the following convert NFA to a DFA where : (7) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BTL-4	Analyze
10.	0(i) Identify a DFA that contains set of all strings over $\{0,1\}$ of length<=2.	BTL-1	Remember

11.	Tabulate the difference be following ε-NFA to DFA.	tween the	e NFA	and D	FA. De	duce th (1	ne 3)		
		states	3	a	b	c		DTI 5	Evoluato
		→p	{q,r}	ф	{q}	{q,r}		DIL-J	Evaluate
		q	ф	{p}	{r}	{q}			
		*r	ф	ф	ф	{r}			
12.	(i).Describe the extended -ε-NFA.	transitio	on func	tion foi	r NFA,]	DFA ar (nd (6)		
	(ii) Consider the followin	g ε-NFA	for an	identi	fier .Co	onsider	the		
	ε-closure of each state an	d give its	s equiv	alent D	OFA.	((7)		
		/		¢	~			DTI 2	Understand
		le x	s)	* →€	E	1		DIL-2	Understand
	\rightarrow 1 \rightarrow 2 \rightarrow 3 \leftarrow	Q			Ì) •(10		
		e Y	B dig	e e	ye Y	/			
13.	Given $\sum = \{a, b\}$ Analyze the language L= $\{b^m a b^n\}$	and cons m, n>0}.	struct a	u DFA v	which 1	recogni	ze 13)	BTL-3	Apply
14.	Tabulate the difference bet following ε -NFA to DFA. (13)	tween the	e NFA	and D	FA. Co	nvert tl	he	BTL-1	Remember
15.	Express the following ε-N between NFA and DFA. (FA to D 13)	FA and	list the	e differ	ence		BTL-2	Understand
16.	Solve the NFA that accept transition table and the existing 0101. Also construction methods	ots all str stended t ct a DFA	ings th ransitic A for th	at ends on func e above	in 01. etion fo e NFA	Give it r the in using (13	s put	BTL-3	Analyze
17.	(i) Point out a DFA which with the input string.	accepts	the sul	ostring	1010 a	nd prov	ve)	BTL-4	Analyze
	(ii) Analyze a DFA that ac with 00.	ccept the	string	{0, 1}	that alv	ways en	nds)		
	1			PART	С-С		,		1

	set of all operator	rs in c lang	lisition utagia		cogin	(8)		
	(ii) Evaluate a DF	FA from the	e given NFA:			(7)		
	M=({qo,q1},{a,1}	b},ð,q0,{q1	with the sta	ate table	diagra	$\inf \delta$		
1.	given below:						BTL-5	Evaluation
		δ	а	b			_	
	->	\mathbf{q}_0	{qo,q1}	q ₁				
	*	• q ₁	Φ	{ q ₀ ,	$, q_1 \}$			
						1		
	Construct the foll	lowing ε-N	FA to DFA.			(15)		
	states	c	9	h				
2	$\rightarrow n$	<u>с</u> Ф	$\{\mathbf{p}\}$	{a}	{	r}	BTI 6	Create
2.	q	{p}	{a}	{r}	{p. (a}	DIL-0	Cleate
	*r	{a}	{r}	<u></u>	d d	<u>Б</u>		
	1	(4)	{1}	Ψ	4	P		
	Evaluate the DF	FA which is	s accepting th	ne follow:	ing la	nguage over		
	the alphabet {0,1	1}.The set of	of all the stri	ngs begir	nning	with a1 that		
3.	when interrupted	d as a binar	y integer, is	multiple	of 5, 1	For example		
5.	strings101,1010	and 1111 a	re in the lang	guage and	l the s	trings 0,100	BTL-5	Evaluation
	,111 are not.(13)					DIES	Lvuluuton
	Design a DEA fre							
	Design a DFA fro	om the giver	INFA.				BTL-6	Create
4	$\mathbf{M} = (\{\mathbf{q}_0, \mathbf{q}_1\}, \{0, 0\} = (\{\mathbf{q}_0, \mathbf{q}_1\}, \{0, 0\} = (0, 0) = (0, 0)$	1}, δ , q_0 , { q_1	<pre>}) where δ is g</pre>	riven by				
	$o(q_0, 0) = \{q_0, q_1\}$	$q_0, 0(q_0, 1) = \{q_0, 1\}$	$\mathbf{q}_1, \delta(\mathbf{q}_1, 0) = \boldsymbol{\varphi},$	$\delta(q_1, 1) =$	{q ₀ , q ₁ }	(15)		
5	Deduce a DFA th	at accept the	e following la	nguage:				
5.	$\{x \in \{a,b\}: x_a =$	Odd and x _b	$ = Even \}$			(15)	BTL-5	Evaluation
		DECU		UNIT	II		GEG	
Degular	Expressions EA	REGU	LAK EXPR	ESSION Drovin	ANI	D LANGUA	GES to be regular — C	losura Propartias of
Regular	· Languages–Equiva	lence and N	Minimization	of Autor	ng Lai mata.	liguages not	to be regular – C	losure i topetties of
Itoguiui	Lunguuges Equiva			0111400	inavai			
				PART	·A			
Q.No			Questions				BTLevel	Competence
1.	List the operators	of Regular	Expressions.				BTL-1	Remember
2.	Differentiate betw	een regular	expression a	and regul	ar.		BTL-1	Remember
3.	Tabulate the regul	ar expression	on for the fol	llowing			BTL-4	Analyze
	L1=set of strings 0 and 1ending in 00.							
4.	What are the closu	ire properti	es of regular	language	es?		BTL-2	Understand
5.	Explain a finite au	tomaton fo	r the regular	expression	$n 0^*$	1*.	BTL-1	Remember
6.	Identify a regular o	expression	tor the set of	all the st	rings.		BTL-1	Remember
7.	Construct a regula	r expressio	n for the set $(1)^*$	of all the	string	gs have	BTL-3	Apply
8	Compose the diffe	$\pi \cdot E = I(0+1)$	$\frac{1}{2}$	sure and	*clos	ire	BTL 5	A nalvzo
9	Illustrate a regular	expression	$\frac{1}{10000000000000000000000000000000000$	f all strin		0's		Analyze Understand
10	What is the Closur	e property	of regular set	$\frac{1}{1}$ S ?	501	0.3.	BTL-2 BTL-2	Understand
_ <u>+</u> · ·	I THAT IS THE CLOSUL		or regular be					Chucistanu

11.	Construct regular expression corresponding to the state diagram:	BTL-2	Understand
12.	Find out the language generated by the regular expression $(0+1)^*$	BTL-5	Evaluate
13.	Name the four closure properties of RE.	BTL-1	Remember
14.	Is it true the language accepted by any NFA is different from the regular language? Justify your answer	BTL-4	Analyze
15.	Show the complement of a regular language is also regular.	BTL-3	Apply
16.	Construct a DFA for the regular expression aa*bb*.	BTL-3	Apply
17.	State the precedence of RE operator.	BTL-5	Evaluate
18.	Construct RE for the language over the set $z = \{a, b\}$ in which total number of a's are divisible by3.	BTL-6	Create
19.	Define RE.	BTL-1	Remember
20.	Create RE to describe an identifier and positive integer.	BTL-6	Create
21.	Express a RE for the language containing of all the strings of any number of a's and b's.	BTL-2	Understand
22.	Illustrate arden's theorem.	BTL-3	Apply
23.	Explain about the equivalence of two automata?	BTL-4	Analyze
24.	Conclude the operations on regular language.	BTL-5	Evaluate
	PART-B		
1.	Demonstrate how the set L= $\{ab^n/n \ge 1\}$ is not a regular. (13)	BTL5	Evaluate
2.	Express the RE "a(a+b)*a" into ε -NFA and find the minimal state DFA. (13)	BTI -1	Remember
		DILI	itemeniser
3.	Examine whether the language $L=\{0^n1^n n>=1\}$ is regular or not? Justify your answer. (13)	BTL-2	Understand
4.	(i)Describe a Regular Expression. Write a regular Expression		
	for the set of strings that consists of alternating 0's and 1's.(6)		
		BTL1	Remember
5.	(i)Describe the closure properties of regular languages. (6)		
	(1)Describe NFA with epsilon for the $RE = (a/b)^*ab$ and convert it in to DFA and further find the minimized	BTL1	Remember
	DFA.		
6	(7) Show that the following languages are not regular	BTI 3	apply
0.	(i) { $w \in \{a,b\}^*$ such that $w=ww^R$ }. (7)	BIE-5	appry
	(ii) Set of strings of 0's and 1's, beginning with a 1, whose		
	value treated as a binary number is a prime.(6)		
7.	Verify whether L= $\{a^{2n} n \ge 1\}$ is regular or not. (13)	BTL-3	Apply
8.	(i)Prove the reverse of a regular language is regular. (6)	BTI -1	Analyze
	(11)A nomomorphism of regular language is regular. (7)		7 mary 20
9.	Write Regular Expressions for the following languages of all strings	BTL-2	Understand

	$ in \{0,1\}^* $ (7)		
	(i) Strings that do not end with 01.		
	(ii) The language of all strings containing both 101 and 010 as		
	substrings.		
	(ii) Prove the formula $(00*1)*1 = 1+0(0+10)*11$ (6)		
10	i) Prove that any language accepted by a DFA can be		
	represented by a regular expression. (7)	BTI -6	Create
	ii) Construct a finite automata for the regular	DIL-0	Cicate
	expression $10+(0+11)0*1.$ (6)		
11	Explain the DFA Minimization algorithm with an example. (13)	BTL-1	Remember
12	Demonstrate how the set L= $\{a^n b^m m, n \ge 1\}$ is not a regular. (13)	BTL2	Understand
13	(i) Analyze and prove that the L1 and L2 are two languages		
	then L1-L2 is regular (7)		
	(ii) Analyze and prove that the 1 and 1.2 are two languages	BTL4	Analyze
	(h) Analyze and prove that the L1 and L2 are two languages (6)		
1.4	$\begin{array}{c} \text{then } L1, L2 \text{ is fegural.} \end{array} \tag{0}$		
14	(1) Analyze and prove that the L1 and L2 are two languages		
	then L1 U L2 is regular. (7)	BTL-4	Analyze
	(ii) Analyze and prove that the L1 and L2 are two languages		T mary 20
	then L1intersection L2 is regular(6)		
15.	(i)Discuss on regular expression. (7)		
	(ii)Discuss in detail about the closure properties of regular	BTL2	Understand
	language. (6)		
16	Solve the following to a regular expression (12)		
10.	Solve the following to a regular expression. (13)		
	0 1		Apply
	$(q) \longrightarrow (q)$	BTL-3	rr J
	\mathbf{X}		
	0) , 0,1		
17.	Evaluate a minimized DFA for the RE $10+(0+11)0*1$ (13)		
		BTL5	Evaluate
	PART C		
1.	(i)Deduce into regular expression that denotes the language		
	accepted by following DFA		
	(15)		
	(15)		
		BTI 5	
		DIL-J	Evaluate
2	Set the algorithm for minimization of a DFA. Develop a		
	minimized DFA for the RE $(a+b)(a+b)^*$ and trace for the	BTL-6	Create
	string baaaab. (15)		
3	Evaluate and explain the algorithm for minimization of DFA.		
	Using the above algorithm minimize the following DFA.(15)		
		RTI _5	Evolucia
1			Evaluate

	0 1		
	Start A 0 B 1 C 0 D 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1		
4	Find out and generalize whether following automata are		
	equivalent or not. $\Rightarrow q1 \stackrel{c}{\rightarrow} \stackrel{c}{\rightarrow} q3 \stackrel{d}{\rightarrow} $	BTL-6	Create
5	Explain that the regular language are closed under :(3)i) Union.(3)ii) Inter section.(3)iii) Kleene closure.(3)iv) Complement.(3)v) Difference.(3)	BTL-5	Evaluate
	UNIT III		
	CONTEXT FREE GRAMMAR AND LA	NGUAGES	
CFG - Par – Languaş	se Trees - Ambiguity in Grammars and Languages - Normal Forms for C ges of a Pushdown Automata - Equivalence of Pushdown Automata and PART-A	FG - Definition of the l CFG - Pumping Lemr	Pushdown Automata na for CFL
Q.No	Questions	BTLevel	Competence
1.	Express the ways of languages accepted by PDA and define them?	BTL2	Understand
2.	Summarize PDA .Convert the following CFG to PDA $S \rightarrow aAA, A \rightarrow aS bS a.$	BTL2	Understand
3.	Define ambiguous grammar and CFG.	BTL1	Remember
4.	Define parse tree and derivation.	BTL1	Remember
5.	Examine the context free Grammar representing the set of Palindrome over (0+1)*	BTL2	Understand
6.	Compare Deterministic and Non deterministic PDA. Is it true that non deterministic PDA is more powerful than that of deterministic PDA? Justify your answer.	BTL2	Understand
7.	When PDA is said to be deterministic?	BTL1	Remember
8.	Examine the language L(G) generated by the grammar G with variables S,A,B terminals a,b and productions.	BTL5	Evaluate

	$S \rightarrow aB, B \rightarrow b, B \rightarrow bA, A \rightarrow aB.$		
9.	Conclude the procedure for converting CNF to GNF with an example.	BTL1	Remember
10.	Design equivalence of PDA and CFG.	BTL6	Create
11.	Point out the languages generated by a PDA using final state of the PDA and empty stack of that PDA.	BTL4	Analyze
12.	Illustrate the rule for construction of CFG from given PDA.	BTL3	Apply
13.	Give a CFG for the language of palindrome string over $\{a,b\}$. Write the CFG for the language, L= $(a^n b^n > n)$.	BTL5	Evaluate
14.	Define GNF.	BTL1	Remember
15.	Show that $L = \{a^p P \text{ is prime}\}$ is not context free.	BTL3	Apply
16.	Infer the CFG for the set of strings that contains equal number of a's and b's over $\sum = \{a, b\}$.	BTL4	Analyze
17.	Define the pumping Lemma for CFLs.	BTL1	Remember
18.	Illustrate the right most derivation (id+id*id) for using the grammar and also state whether a given grammar is ambiguous one or not. $E \rightarrow E + E/E * E/(E)/id$	BTL3	Apply
19.	Point out the additional features a PDA has when compared with NFA.	BTL4	Analyze
20.	Design parse tree for the grammar $S \rightarrow aS \mid aSbS \mid \epsilon$. This grammar is ambiguous. Show that the string aab has two parse trees.	BTL6	Create
21.	Describe the unit and null production detail.	BTL2	Understand
22.	Show the Instantaneous Description (ID) for PDA.	BTL3	Apply
	Consider the grammar G with the following production.	BTL4	Analyze
23.	$S \rightarrow Aa, S \rightarrow B, B \rightarrow A, B \rightarrow bb, A \rightarrow a, A \rightarrow bc, A \rightarrow B$ Eliminate all unit production and get an equivalent grammar G_1 .		
24.	Conclude the two different ways to define PDA acceptability.	BTL5	Evaluate
	PART-R	I	
1.	(i) Express a PDA accepting L= $\{a^n b^{3n} \mid n \ge 1\}$ by empty store.		
	(6) (ii) Express a PDA that accepts $L = \{ a^n b^m c^n n,m \ge 1 \}$. (7)	BTL2	Understand
2.	(i) Describe the different types of accentence of a DDA Are		
	(i) Describe the different types of acceptance of a PDA. Are they equivalent in sense of language acceptance? Justify your answer. (7) (ii) Design a PDA to accept $\{0^n1^n n>1\}$.Draw the transition diagram for the PDA and identify the instantaneous description (ID) of the PDA which accepts the string '0011'. (6)	BTL1	Remember
3.	(i) Identify that deterministic PDA is less powerful than non- deterministic PDA. (7)		D I
	(ii) Construct a PDA accepting $\{a^nb^ma^n / m, n \ge 1\}$ by empty	BILI	Kemember

	stack. Also tell the corresponding context-free grammar accepting the same set. (6)		
1	(i) Construct a name trac for the following argummer (6)		
4.	(i) Construct a parse tree for the following granniar (b) $G=(\{S,A\},\{a,b\},P,S)$ where P Consists of $S \rightarrow aAS b$		
	A→SbA ba		~
	Draw the derivation tree for the string w=abbbab. (ii)Let G=(V,T,P,S) be a Context Free Grammar then prove that	BTL6	Create
	if the recursive inference procedure call tells us that terminal		
	string W is in the language of variable A, then there is a parse		
	tree with a root A and yield w. (7)		
5.	(i)Define Non Deterministic Push Down Automata. Is it true that DPDA and NDPDA are equivalent in the sense of		
	language acceptance is concern? Justify your answer. (4)		
	(ii) Let $M = (\{q_0, q_1\}, \{0, 1\}, \{X, z_0\}, \delta, q_0, z_0, \Phi\}$ where δ is given		
	by: $\delta(z_0, y_0) = \{(z_0, y_0)\}$	BTL1	Remember
	$\delta(q_0, 0, X) = \{(q_0, XX)\}$		
	$\delta(\mathbf{q}_0, 1, \mathbf{X}) = \{(\mathbf{q}_0, 1, \mathbf{X})\}$		
	$\delta(\mathbf{q}_1, \mathbf{I}, \mathbf{X}) = \{(\mathbf{q}_1, \boldsymbol{\varepsilon})\}$		
	$\delta(\mathbf{q}_1, \varepsilon, \mathbf{X}) = \{(\mathbf{q}_1, \varepsilon)\}$		
	$\delta(\mathbf{q}_1, \boldsymbol{\varepsilon}, \mathbf{z}_0) = \{(\mathbf{q}_1, \boldsymbol{\varepsilon})\}$		
6	Construct a CFG G = (V,T,P,S) generating N(M). (9)		
0.	(i) Define PDA. Give an Example for a language accepted by PDA by empty stack (7)		
	(ii) Convert the grammar	BTL2	Understand
	S->0S1 A		
	A->1A0 S ε into PDA that accepts the same language by the		
	empty stack .Check whether 0101 belongs to N(M). (6)		
7.	(i) Analyze the theorem: If L is Context free language then		Analyze
	prove that there exists PDA M such that $L=N(M)$. (7)	BTL4	Anaryze
	(ii) Prove that if there is PDA that accepts by the final state		
	State (6)		
8.	Solve the following grammar		
	S→aB bA		
	A→a aS bAA		
	$B \rightarrow b bS aBB$ for the string		
	"baaabbabba"	BTL5	Evaluate
	Give		
	i) Leftmost derivation (4)		
	ii)Rightmost derivation (4)		
	iii)Derivation Tree (5)		
9.	Express the following grammar G into Greibach Normal		
	$Form(GNF) \tag{13}$	BTL3	Apply
	$A \rightarrow BS/h$	2120	
	B→SAla		
10.	Construct a PDA that recognizes and analyzes the		
	language $\{a^ib^jc^k \mid i,j,k>0 \text{ and } i=j \text{ or } i=k\}$ and also	BTL4	Analyze
	explain about PDA acceptance		
	(i) From empty Stack to final state. (6)		
1	(11) From Final state to Empty Stack. (7)		

11.	Suppose L=L(G) for some CFG G=(V,T,P,S), then prove that	BTL-1	Remember
	L-{ ϵ } is L(G') for a CFG G' with no useless symbols or ϵ -		
	productions (13)		
12	(i) Describe the PDA that accent the given CEG (7)		
12.	(i) Describe the LDA that accept the given CFO (7) S \rightarrow xaax	BTI -7	Understand
	$X \rightarrow a x/b x/f$	DIL 2	Onderstand
	(ii) Express a PDA for the language $a^{n}b^{m}a^{n+m}$ (6)		
13	(i) Express a PDA for the language $\{WCWR/W\in \{0,1\}\}$ (7)		A 1
	(ii) Illustrate a CFG for the constructed PDA. (6)	BIL-3	Арріу
1.4			
14.	(1) Consider the grammar (7)		A 1
	$\nabla \neg ASB \varepsilon$	BIL-4	Analyze
	$A \rightarrow ChS \mid A \mid bh$		
	Are there any useless symbols s-production and unit		
	production? Eliminate if so		
	(ii) Define derivation tree. Explain its uses with an example.		
	(6)		
15.	Express the following grammar G into Greibach Normal		
	Form(GNF)	BTL-2	Understand
	$S \rightarrow XB \mid AA$		
	$A \rightarrow a \mid SA$		
	$B \rightarrow b$		
	$X \to a$ (13)		
16.	(i) Solve a PDA for accepting a language $\{a^nb^{2n} n \ge 1\}$. (7)		
	(ii) Solve a PDA for accepting a language $\{0^n 1^m 0^n \mid m,$	ס דד 2	Annalas
	$n >= 1$ }. (6)	DILJ	Аррту
17.	Deduce PDA for the given CFG, and test whether 010^4 is		
	acceptable by this PDA.	BTL-5	Evaluation
	$S \to 0BB \tag{12}$		
	$\mathbf{B} \to \mathbf{0S} \mid \mathbf{1S} \mid 0 \tag{13}$		
	PART-C		
1.	Design and Explain the following grammar into equivalent		
	one with no unit production and no useless symbols and	BTL-5	Evaluation
	convert into CNF. (13)		
	S→A CB		
	A→C D		
	$B \rightarrow 1B 1$		
	C→0C 0		
-	$D \rightarrow 2D 2$		
2.	(i) Let P be a PDA with empty stack language $L=N(P)$ and	_	
	suppose that ε is not in L. Design how you would modify P so	BTL-6	Create
	that it accepts $LU{\epsilon}$ by empty stack. (8)		
2	(ii) Design a DPDA for even length palindrome. (7)		
3.	(1) Convert the following CFG to PDA and analyze the answer		
	(a+b) and a++. (8)	BIL-6	Create
	$ 1 \rightarrow a b a b U 1 $		
	$E \rightarrow I E+E E^*E (E)$		
	(1) Use the CFL pumping lemma to show how each of these large matter has $a_{1} = a_{1} + b_{2} = a_{1} + b_{$		
1	$[anguages not to be context-tree {a'b'c^{k} 1 < j < k}. (7)$		
4.	(1) If L is a CFL then prove that there exists PDA M, such that $I = N(M)$	BTL-6	Create
	L=IN(MI), language accepted by empty stack.		
	(i) Construct a DDA ampty store $\mathbf{I} = \{a^{mh^{n}} a \neq m\}$ (2)		
1	$[(n) \cup (n) \cup (n \cup n \cup $		

5.	(i)Test and construct a PDA that accepts the language L over $\{0, 1\}$ by empty stack which accepts all the string of 0's and 1's in which a number of 0's are twice of number of 1's. (8) (ii)Construct a PDA by empty stack for the language $\{a^mb^m c^n m, n \ge 1\}$. (7)	BTL-5	Evaluation
	UNIT IV TURING MACHINES		
Turing M Acceptors Multitape	achines – Introduction – Formal definition of Turing machines – Instant s – Turing machine as Transducers computable languages and functions Turing Machine- Programming Techniques for TM.	aneous descriptions – - Deterministic TM, N	Turing machines as Aulti-track and
	PART-A		
Q.No	Questions	BTLevel	Competence
1.	Discuss on checking off symbols.	BTL2	Understand
2.	Illustrate the Basic Turing Machine model and explain in one move. What are the actions take place in TM?	BTL3	Apply
3.	When do you say a turing machine is an algorithm?	BTL1	Remember
4.	Define universal TM.	BTL4	Analyze
5.	Write a note on Turing machine as Transducers.	BTL1	Remember
6.	Define Turing Machine.	BTL1	Remember
7.	Discuss the applications of Turing machine.	BTL2	Understand
8.	Narrate on Turing machines as Acceptors	BTL1	Remember
9.	What is the class of language for which the TM has both accepting and rejecting configuration? Can this be called a Context free Language? Discuss.	BTL2	Understand
10.	Define Instantaneous description of TM.	BTL3	Apply
11.	Explain the special features of TM.	BTL5	Evaluate
12.	Write the difference between finite automata and Turing machine.	BTL1	Remember
13.	Give a note Deterministic TM	BTL6	Create
14.	List the Programming Techniques for TM	BTL5	Evaluate
15.	Draw a transition diagram for a turing machine to identify n mod 2.	BTL1	Remember
16.	Express the techniques for TM construction.	BTL2	Understand
17.	Develop the short notes on two-way infinite tape TM.	BTL6	Create
18.	Differentiate TM and PDA.	BTL4	Analyze
19.	Point out the role of checking off symbols in a Turing Machine.	BTL4	Analyze
20.	Illustrate the basic difference between 2-way FA and TM.	BTL3	Apply
21.	Describe the language accepted by TM.	BTL2	Understand
22.	Show the various representation of TM.	BTL3	Apply
23.	Explain the situation before and after the move caused by the transition of TM.	BTL4	Analyze
24.	Evaluate a TM for a successor function for a given unary number $f(n)=n+1$.	BTL5	Evaluate

PART-B			
1.	Illustrate the Turing machine for computing $f(m, n) = m - n$ (proper subtraction). (13)	BTL1	Remember
2.	Construct a turing machine that estimate unary multiplication (Say $000 \ge 000000$).(13)	BTL2	Understand
3.	Discuss a TM to accept the language L= $\{1^n 2^n 3^n n \ge 1\}$. (13)	BTL2	Understand
4.	Demonstrate a Turing Machine to compute, $f(m+n)=m+n $ m,n>=0 and simulate their action on the input 0100. (13)	BTL3	Apply
5.	 (i) Examine the role of checking off symbols in a Turing Machine. (6) (ii) Describe a Turing Machine M to implement the function "multiplication" using the subroutine copy. (7) 	BTL1	Remember
6.	 (i) Solve the turing machine to accept the language L={0ⁿ1ⁿ n >=1}. (7) (ii) Show that if a language is accepted by a multi tape turing machine, it is accepted by a single-tape TM. 	BTL3	Apply
7.	 (i) Summarize in detail about multi head and multi tape TM with an example. (7) (ii) Construct a Turing Machine to accept palindromes of even length in an alphabet set∑={a,b}.Trace the strings "abab"and"baab". (6) 	BTL5	Evaluate
8.	 (i) Explain the TM as computer of integer function with an example. (ii) Design a TM to implement the function f(x)=x+1. (6) 	BTL4	Analyze
9.	(i) Design a TM to accept these to all strings {0,1} with 010 as substring.(7)(ii) Write short notes on Two–way infinite tape TM.(6)	BTL6	Create
10.	(i) Describe computing a partial function with a TM. (6) (ii) Design a TM to accept the language $L=\{a^nb^nc^n n>=1\}$. (7)	BTL1	Remember
11.	 (i) Define Turing machine for computing f(m,n)=m*n, n€N. (7) (ii) Write notes on partial solvability. (6) 	BTL-1	Remember
12.	(i) Construct a TM to reverse the given string {abb}.(6)(ii) Explain Multitape and Multihead Turing machine with suitable example.(7)	BTL2	Understand
13.	 (i) Analyze and Construct a TM to compute a function f(w) =WW^R where W€(0+1)*. (7) (ii) Construct Turing machine (TM) that replace all the occurrence of 111 by 101 from sequence of 0's and 1's. (6) 	BTL4	Analyze
14.	Explain a TM with no more than three states that accepts the language. $a(a+b)^*$. Assume $W \in = \{a,b\}$. (13)	BTL4	Analyze
15.	Construct a Turing Machine to accept palindromes of odd length in an alphabet set $\sum = \{a,b\}$. Trace the strings "ababa". (13)	BTL2	Understand
16.	Demonstrate a TM for the language which recognizes the language L=01*0. (13)	BTL3	Apply
17.	Compare and explain the deterministic and non-deterministicTM with an example.(13)	BTL5	Analyze

	PART-C		
1.	Consider two-tape Turing Machine (TM) and determine whether		
	the TM always writes an on blank symbol on its second tape		
	during the computation on any input string 'w'. Formulate this	BTL-6	Create
	problem as a language and show it is undecidable. (15)		
2.	(i)Draw a Turing machine to find 1's complement of a binary		
	number. (8)		
	(ii) Draw a Turing machine to find 2's complement of a binary	BTL-5	Evaluate
	number. (7)		
3.	(i) Test and explain a TM to compute $f(m,n) = m^*n$, for all		
	$m,n \in \mathbb{N}.$ (6)		
	(ii) Explain how a multi-track in a TM can be used for testing	BTL-5	Evaluate
	give n positive integer is a prime or not. (9)		
4.	Design the various programming techniques of turing machine		
	construction in detail.(15)	BTL-6	Create
5.	Explain a Turing Machine for language $f(W) = \{W^R\}$		
	$\in \{a,b\}^+\} \tag{15}$	BTL-5	Evaluate

UNIT V

COMPUTATIONAL COMPLEXITY

Undecidability- Basic definitions- Decidable and undecidable problems - Properties of Recursive and Recursively enumerable languages —Post's Correspondence Problem– complexity classes – introduction to NP-Hardness and NP-Completeness.

PART-A			
Q.No	Questions	BTLevel	Competence
1.	Distinguish between PCP and MPCP? What are the concepts used in UTMs?	BTL2	Understand
2.	List out the features of universal turing machine.	BTL1	Remember
3.	When a recursively enumerable language is said to be recursive? Discussion it.	BTL2	Understand
4.	Compare and contrast recursive and recursively enumerable languages	BTL4	Analyze
5.	State when a problem is said to be decidable?	BTL1	Remember
6.	Define NP hard and NP completeness problem.	BTL1	Remember
7.	Define a universal language Lu?	BTL1	Remember
8.	Is it true that the language accepted by a non-deterministic Turing Machine is different from recursively enumerable language? Judge your answer.	BTL5	Evaluate
9.	Formulate the two properties of recursively Enumerable sets which are undecidable	BTL6	Create
10.	^W hen a problem is said to be undecidable? Give an example of undecidable problem. Analyze it.	BTL4	Analyze
11.	What is a recursively enumerable language and recursive sets? Generalize your answer.	BTL6	Create
12.	Define the classes of P and NP.	BTL1	Remember
13.	Is it true that complement of a recursive language is recursive? Discuss your answer.	BTL2	Understand

14.	Describe about reduction in TM.	BTL1	Remember
15.	Point out the properties of recursive and recursive enumerable language.	BTL4	Analyze
16.	Illustrate on halting problem.	BTL3	Apply
17.	Show the Properties of Recursive Languages.	BTL3	Apply
18.	Explain about tractable problem.	BTL5	Evaluate
19.	Describe post correspondence problem.	BTL2	Understand
20.	Illustrate about time and space complexity of TM.	BTL3	Apply
21.	Describe the encoding of UTM.	BTL2	Understand
22.	Illustrate about the undecidability of PCP.	BTL3	Apply
23.	Does PCP with two lists $x = (b, a, ca, abc)$ and $y = (ca, ab, a, c)$ have a solution? Explain	BTL4	Analyze
24.	Compare between recursive and recursive enumerable language.	BTL5	Evaluate
	PART-R		
1.	(i)Describe about the tractable and intractable problems. (7) (ii)Identify that "MPCP reduce to PCP". (6)	BTL1	Remember
2.	(i) Describe about Recursive and Recursive Enumerablelanguages with example.(ii) State and describe RICE theorem.(6)	BTL1	Remember
3.	(i)Summarize diagonalization language. (6) Discuss the significance of universal turing machine and also construct a turing machine to add two numbers and encode it. (7)	BTL2	Understand
4.	Discuss post correspondence problem. Let $\sum = \{0,1\}$. Let A and B be the lists of three strings each, defined asABiwi11210111310(i) Does the PCP have a solution?(7)(ii) Prove that the universal language is recursively enumerable.(6)	BTL2	Understand
5.	(i)Explain computable functions with suitable example.(ii)Explain in detail notes on Unsolvable Problems.(7)	BTL4	Apply
6.	 (i) Describe in detail notes on universal Turing machines with example. (7) (ii) Collect and write the short notes on NP-complete problems. (6) 	BTL1	Remember
7.	(i) Show that the diagonalization language (Ld) is not a recursively enumerable.(7)(ii) Illustrate about un solvability.(6)	BTL3	Apply
8.	Prove that Post Correspondence Problem is undecidable. (13)	BTL5	Evaluate
9.	(i)Explain about Universal Turing machine and show that the universal language (L _u) is recursively enumerable but not		

	recursive. Generalize your answer. (8) (ii)Design and explain how to measure and classify complexity (5)	BTL6	Create
10.	(i) Explain about the recursively Enumerable Language with		
101	example (6)	BTL4	Analyze
	(ii) Point out that the following problem is undecideble Given		
	(ii) Four out that the following problem is undeclaable. Given two CECs C1 and C2 is $L(C1) = L(C2) = 0$		
11	two CFGs G1 and G2 is $L(G1) \cap L(G2) = \emptyset$. (7)		
11.	(1) Show that the characteristic functions of the set of all even	DTI 2	Annly
	numbers is recursive. (7)	BIL-3	Арріу
	Illustrate in detail notes on primitive recursive functions with		
	examples. (6)		
12.	(i)Point out the Measuring and Classifying Complexity. (7)	BTL-4	Analyze
	(ii) Does PCP with two lists $x=(b,b ab^3,ba)$ and $y=(b^3,ba,a)$		
	Have a solution. Analyze your answer. (6)		
13.	(i) Discuss in detail about time and space computing of a		
	turing machine. (6)	BTL-2	Understand
	(ii) Express two languages which are not recursively	DIL-2	Understand
	enumerable. (7)		
14.	(i)Describe in detail Polynomial Time reduction and NP-		
	completeness. (7)	BTL1	Remember
	(ii) List out the short notes on NP-hard problems (6)		
15.	Discuss in detail about decidable problems. (13) BTL-2	Understand
16	Illustrate the various complexity classes with an example (1)		Apply
10.	industrate the various complexity classes with an example. (1.	bill-5	Аррту
17.	(i) The universal language L_u is a recursively enumerable		Eveluate
	language and we have to prove that it is undecidable (non-	BILS	Evaluate
	(i) Evaluate the solution for the following system of posts)	
	correspondence problem. $X = \{100, 0, 1\}$ $Y = \{1, 100, 00\}$ (6)		
		1	
1	PART-C		
1.	Consider and find the languages obtained from the		England
	following operations:	BIL-3	Evaluate
	(i) Union of two recursively enumerable languages (iii))	
	(iii) L if L and complement of L are recursively numerable (5		
2.	Prove that the universal language is recursively numerable		Create
	but not recursive. Generalize your answer. (15)	DIL-0	Create
2	() Dies endernaliste en der ideligen der ideligen nichten		
5.	(1) Plan and explain on decidable and un-decidable problems	DTI 6	Crooto
	(ii) Design and prove that for two recursive languages I 1 and	DIL-0	Create
	I_2 their union and intersection is recursive languages L1 and I_3		
4.	(i) Compare and write about tractable and intractable problems		
	with an example. (10)	BTL-5	Evaluate
	(ii) Explain the language L_u and show that L_u is RE language.	_	
	(5)		
5.	Prove and explain that the halting problem is undecidable. (13)	BTL-5	Evaluate
	L		

