DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING OUESTION BANK

SUBJECT CODE : 19CS502 NAME: AUTOMATA THEORY AND COMPILER DESIGN

.

SEM / YEAR : V/III

UNIT I -INTRODUCTION TO COMPILERS

Phases of a compiler – Lexical Analysis – Role of Lexical Analyzer — Lex – Finite Automata – Regular Expressions to Automata – NFA to DFA- Minimizing DFA.

	PART-A (2 - MARKS)			
Q. No	QUESTIONS	Competence	BT Level	
1.	Define tokens, patterns and lexemes.	Remember	BTL1	
2.	Classify approach would you use to recover the errors in lexical analysis phase?	Apply	BTL3	
3.	Apply the regular expression for identifier and white space.	Apply	BTL3	
4.	Point out why is buffering used in lexical analysis?	Analyze	BTL4	
5.	Define transition diagram for an identifier.	Remember	BTL1	
6.	Compare syntax tree and parse tree.	Analyze	BTL4	
7.	Summarize the issues in a lexical analyzer.	Evaluate	BTL5	
8.	Define buffer pair.	Remember	BTL1	
9.	Differentiate the features of DFA and NFA.	Understand	BTL2	
10.	Identify the interactions between the lexical analyzer and the parser.	Remember	BTL1	
11	State parse tree and construct a parse tree for $-(id + id)$	Evaluate	BTL5	
12.	Name the operations on languages.	Remember	BTL1	
13.	List out the phases of a compiler.	Remember	BTL1	
14.	Generalizes the advantage of having sentinels at the end of each buffer halves in buffer pairs.	Create	BTL6	
15.	Analyze and identify the symbol table for the following statements. int a,b; float c; char z;	Analyze	BTL4	
16.	Discuss Regular expression and the Algebraic properties of Regular Expression.	Understand	BTL2	
17.	Develop the Structure of lex program.	Create	BTL6	
18.	Apply a grammar for branching statements.	Apply	BTL3	
19.	Express the main idea of NFA? And discuss with examples (a/b)*	Understand	BTL2	
20.	Define lex and give its execution steps.	Understand	BTL2	

21	Differentiate interpreters and compilers	Analyze	BTL4
22	Apply the parse tree for the statement $z := x + y^* 130$.	Apply	BTL3
23	Outline the role of lexical analysis in compiler design.	Understand	BTL2
24	Criticize the use of Input Buffering with simple examples.	Evaluate	BTL5
	PART-B (13- MARKS)		
1.	Describe the various phases of compiler with suitable example (13)	Remember	BTL1
2	(i)Give the structure of compiler. (4)	Analyze	BTL4
	(ii)Analyze structure of compiler with an assignment statement (9)	-	
3.	(i).Discuss in detail about the role of Lexical analyzer with the (7)	Understand	BTL2
	possible error recovery schemes.		
	(ii)Describe in detail about issues in lexical analysis. (6)		
4		Remember	BTL1
	(ii)Discuss about the recognition of tokens with example (6)		
5	Summarize in detail about how the tokens are specified by the (13)	Understand	BTL2
_	compiler with suitable example.		
6		Understand	BTL2
0	Automata and Non-Deterministic Finite Automata with		DILL
	examples.		
7	Solve the given regular expression into NFA using Thompson	Apply	BTL3
,	construction	· ·PP·J	D120
	$i)(a/b)^* abb (a/b)^*.$ (7)		
	ii)ab*/ab (6)		
8		Create	BTL6
	(i)Illustrate the algorithm for minimizing the number of states (8)	Apply	BTL3
9	of a DFA	rippiy	DILS
	(ii)Minimize the following states of DFA (5)		
	(i) vinimize the following states of DTTT (3)		
10.		Remember	BTL1
10. 11	Define Lex and Lex specifications. How lexical analyzer is (13) constructed using lex? Give an example.	Remember	BTL1 BTL1
	Define Lex and Lex specifications. How lexical analyzer is (13) constructed using lex? Give an example.		
11	Define Lex and Lex specifications. How lexical analyzer is (13) constructed using lex? Give an example.	Remember	BTL1

	minimized DFA for the constructed NFA(a^* / b^*)*			
14	Find the minimized DFA for the regular expression: (0+1)*(0+1)10.	(13)	Analyze	BTL4
15	Discuss in detail about the output of each phase of compiler for the expression $a:=b+c*50$.	r(13)	Understand	BTL2
16	Demonstrate the role of lexical analyzer in detail with necessary diagrams	(13)	Apply	BTL3
17	Determine the minimum -state DFA for the regular expression $(a / b)^* a (a/b)$	(13)	Evaluate	BTL5
	PART-C (15- MARK)			
1.	 (i) Create languages denoted by the following regular expressions a) (a b)*a(a b)(a b) b) a*ba*ba*ba* c) !! (aa bb)*((ab ba)(aa bb)*(ab ba)(aa bb)*)* (ii) Write regular definitions for the following languages: a) All strings of lowercase letters that contain the five vowels in order. b) All strings of lowercase letters in which the letters are in ascending lexicographic order. c) Comments, consisting of a string surrounded by / and /, without an intervening */, unless it is inside double-quotes (") 	(6)	Create	BTL6
2.	 Find transition diagrams for the following regular expression and regular definition. a(a b)*a ((ɛ a)b*)* All strings of digits with at most one repeated digit. All strings of a's and b's that do not contain the substring abb. All strings of a's and b's that do not contain the subsequence abb. 	(15)	Evaluate	BTL5
3.	Evaluate that the following two regular expressions are equivalent by showing that the minimum state DFA's are same (a / b) * (a * / b *) *	(15)	Evaluate	BTL5
4.	Explain in detail the tool for generating Lexical-Analyzer with an example program.	(15)	Evaluate	BTL5
5	Develop the Lex Program to recognize the identifiers, constants and operators	(15)	Create	BTL6
	UNIT II SYNTAX ANALYSIS	. /		1
Down Reduc	of Parser – Grammars – Error Handling – Context-free grammars Parsing - General Strategies Recursive Descent Parser Predictive e Parser-LR Parser-LR (0)Item Construction of SLR Parsing Ta - Error Handling and Recovery in Syntax Analyzer-YACC.	e Pa	rser-LL(1) Pa	rser-Shift

PART-A (2 - MARKS)					
1.	Eliminate the left recursion for the grammar.	Create	BTL6		
	$S \rightarrow Aa \mid b$				
	$A \rightarrow Ac \mid Sd \mid \varepsilon$				
2.	Define handle pruning.	Remember	BTL1		
3.	Compute FIRST and FOLLOW for the following grammar	Apply	BTL3		
	$S \rightarrow AS$				
	$S \rightarrow b$				
	$A \rightarrow SA$				
	$A \rightarrow a$	D 1			
4.	State the concepts of Predictive parsing .	Remember	BTL1		
5.	Differentiate Top Down parsing and Bottom Up parsing?	Understand	BTL2		
6.	Define Recursive Descent Parsing.	Remember	BTL1		
7.	State the different error recovery methods of predictive	Remember	BTL1		
0	parsing.	A 1			
8.	Write an algorithm for finding FOLLOW.	Analyze	BTL4		
9.	What is the main idea of Left factoring? Give an example.	Understand	BTL2		
10.	Define LL(1) Grammar.	Remember	BTL1		
11.	Difference between ambiguous and unambiguous grammar.	Analyze	BTL4		
12.	Define parser. Explain the advantages and disadvantages of LR parsing?	Evaluate	BTL5		
13.	Define Augmented Grammar with an example.	Remember	BTL1		
14.	Evaluate the conflicts encountered while parsing?	Evaluate	BTL5		
15.	Point out the categories of shift reduce parsing.	Analyze	BTL4		
16.	How to create an input and output translator with YACC.	Create	BTL6		
17.	Give the four possible actions of LR Parsing.	Understand	BTL2		
18.	Solve the following grammar is ambiguous: S→aSbS / bSaS / €	Apply	BTL3		
19.	Discuss when Dangling reference occur?	Understand	BTL2		
20.	Illustrate the use of GOTO function.	Apply	BTL3		
21.	Give the comparison between various LR parsers	Evaluate	BTL5		
22.	Write down the structure of YACC file	Analyze	BTL4		
23.	Differentiate Lex and yacc	Understand	BTL2		
24.	Write about Closure Operation	Apply	BTL3		
	PART-B (13- MARKS)	1			
1.	·/ I	Analyze	BTL4		
	(ii)Eliminate left recursion and left factoring for the following (6)				
	grammar.				
	$E \longrightarrow E + T E - T T$				
-	$T \rightarrow a \mid b \mid (E).$	G			
2.		Create	BTL6		
	(ii) Construct a parse tree for the input string w-cad using top				
	down parser . (7)				

	S->cAd			
	A->ab a			
3.	(i)Analyze the give grammar to construct predictive parser $S \rightarrow +SS \mid *SS \mid a$ with the string "+*aaa.	(13)	Analyze	BTL4
4.	 (i) Evaluate predictive parsing table for the following grammar E→E+T T T→T*F F F→(E) id (ii) Parse the string id+id*id 	(9)	Evaluate	BTL5
5.	Solve the following grammar for the predictive parser and parse the string 000111 S>0S1 S->01	(13)	Analyze	BTL2
6.	(i).Describe on detail about the various types of parser (ii)Discuss about the context-free grammar.	(7) (6)	Remember	BTL1
7.	(i).Discuss in detail aabout the role of parser.(ii).What are the Error recovery techniques used in Predictive parsing? Explain in detail.		Remember	BTL1
8.	(i) Give the predictive parser table for the following grammar. $S \rightarrow (L) \mid a$ $L \rightarrow L, S \mid S$ (ii) Parse the string (a, (a, a)).	(8) (5)	Understand	BTL2
9.	(i_Analyze the following grammar is a LALR grammar. S->CC C->cC d (ii)Parse the input string ba using the table generated.	(13)	Analyze	BTL4
10.	 (i)Define YACC parser generator. List out the Error recovery actions in YACC. (ii) Define SLR (1) parser. Describe the Steps for the SLR parser. 	(8) (5)	Remember	BTL1
11	(i)Show SLR parsing table for the following grammar A->(A) a ii)Differentiate SLR and CLR	(9) (4)	Apply	BTL3
12.	Solve the following grammar to generate the SLR parsing table. $E \rightarrow E+T \mid T$ $T \rightarrow T^*F \mid F$ $F \rightarrow F^* \mid a \mid b$		Understand	BTL2
13.	 (i) Consider the following grammar S →AS b A→SA a. Construct the SLR parse table for the grammar. (ii) Show the actions of the parser for the input string "abab". 	(3)	Apply	BTL3
14.	Give the LALR for the given grammar. S->AA A->Aa b	(13)	Understand	BTL2

15.	Examine the following grammar using canonical parsing table. (1 S->CC	3)Remember	BTL1
	C->cC d		
16.	Explain SLR parser.Construct SLR parse for the given (1) grammar.	3)Evaluate	BTL5
	S->L=R		
	$S \rightarrow L = R$ $S \rightarrow R$		
	S-≥ĸ L->*R		
	L->/K L->id		
	R->L		
17.		.3)Apply	BTL3
17.	The input aaa $^*a++$ for the grammar	Зларрту	DILS
	S->SS+		
	S->SS*		
	S->a		
	PART-C (15 -MARKS)		
1.		8) Create	BTL6
1.	(i) What is Leftmost derivation and Rightmost derivation . (Draw leftmost derivation and Rightmost derivation for the	o) Cleale	DILO
	e		
	following. $E \rightarrow E + E E^*E $ id	7)	
	(ii) What is an ambiguous and unambiguous grammar? Identify (<i>')</i>	
	the following grammar is ambiguous or not. $E \rightarrow E + E + E = E + E + id$ for the contense id + id*id		
2	$E \rightarrow E + E \mid E \approx E \mid (E) \mid -E \mid id \text{ for the sentence id } + id \approx 10^{-10} \text{ for the sentence id}$	5) Evaluata	BTL5
2	Explain in detail about the various types of Top –down(1 parsing.	5) Evaluate	DILJ
2		5) Evoluata	BTL5
$\frac{3}{4}$		5)Evaluate	
4	(i) What is CFG .Explain in detail about the Context-Free (Grammar	8) Evaluate	BTL5
		7)	
	(ii) Construct Stack implementation of shift reduce parsing for (<i>')</i>	
	the grammar E->E+E		
	$E \rightarrow E + E$ $E \rightarrow E * E$		
	E->(E)		
	$E \rightarrow E$ and the input string id1+id2*id3.		
5.		5) Creata	BTL6
э.	Discuss in detail about YACC Paser -Generator with an(1 example program	5)Create	DILO
	UNIT-III INTERMEDIATE CODE GENERA	TION	
Crintor			diata
	x Directed Definitions, Evaluation Orders for Syntax Directed Definages: Syntax Tree, Three Address Code, Types and Declaration		
-	Checking.	s, mansiation o	n Expressions
i ype v	PART-A (2 - MARKS)		
1.	List out the two rules for type checking.	Remember	BTL1
<u>1.</u> 2.		Analyze	BTL1 BTL4
	Compare synthesized attributes and inherited attributes.		
3.	What is Annotated parse tree?	Remember	BTL1
4.	Define Type checker.	Remember	BTL1
5.	What is a syntax tree? Draw the syntax tree for the assignment	Create	BTL6
	statement $a := b * -c + b * -c$		

6.	Define type systems.		Remember	BTL1
7.		cking the type of a function.	Understand	BTL2
8.		definition of a simple desk calculator.	Remember	BTL1
9.		bes of intermediate representation.	Evaluate	BTL5
10.		veen syntax-directed definitions and	Understand	BTL2
	translation schemes.	5		
11.	State the type expressio	ns.	Remember	BTL1
12.		f implementing three-address	Apply	BTL3
13.		and L-attribute definitions.	Analyze	BTL4
14.		for the given expression $a+b^*c$.	Create	BTL6
15.		I statement if a b then 1 else 0 into	Understand	BTL9 BTL2
10.	three address code.		Chiefstund	DILL
16.		ing rules are L-attribute or not?	Evaluate	BTL5
	Semantic rules			
	A.s = B.b;			
	B.i = f(C.c, A.s)			
17.		f representing a syntax tree?	Understand	BTL2
18.		cted definition for if-else statement	Analyze	BTL4
19.		yntax directed definition	Apply	BTL3
20.		code sequence for the assignment	Apply	BTL3
	statement. d=(a-b)+(a-c		11.5	
21.	Give the evaluation ord		Evaluate	BTL5
22	What is translation sch	eme?	Understand	BTL2
23.	How will you evaluate	semantic rules?	Analyze	BTL4
24.		ct syntax tree for an expression	Apply	BTL3
		PART-B (13- MARKS)		
1.	Discuss the following	n detail about the Syntax Directed	Understand	BTL2
	Definitions.			
		nd Synthesized attributes.	(7)	
	(ii) Evaluate SDD of a		(6)	
		arse tree for the following expression	Evaluate	BTL5
2.	(i)(3+4)*(5+6)n		(6)	
	(ii)1*2*3*(4+5)n		(7)	
	Using the given SDD			
	Production	Semantic Rules		
	D —>TL	L.inh = T.type		
	$T \longrightarrow int$	T.type = integer		
	T —> float	T.type = float		
	$L \longrightarrow L1$, id	L1.inh = L.inh		
		addType (id.entry, Linh)		
2	Suppose that we have a	moduction A DCD Each of the form	(12) A polyage	
3.		production $A \rightarrow BCD$. Each of the four d D have two attributes: S is a	(15) Analyze	BTL4
	non terminal A, B, C ar	d D have two attributes: S is a		

	synthesized attribute and i is an inherited attribute. Analyze For each of the sets of rules below tell whether (i)the rules are consistent with an S-attributed definition(ii) the rules are consistent with an L-attributed definition and(iii) whether the rules are consistent with any evaluation order at all? A.s = B.i + C.s			
	A.s = B.i + C.s and $D.i = A.i + B.s$.			
4.	Illustrate in detail about the various instructions forms of three address instruction with suitable examples	(13)	Apply	BTL3
5.	Discuss in detail about (i)Dependency graph (ii)Ordering Evaluation of Attributes.	(10) (3)	Understand	BTL2
6.	Create variants of Syntax tree. Explain in detail about it with suitable examples.	(13)	Create	BTL6
7.	 (i).Analyse the common three address instruction forms. (ii). Explain the two ways of assigning labels to the following three address statements Do i=i+1; While (a[i]<v);< li=""> </v);<>	(7) (6)	Analyze	BTL4
8.	Describe.in detail about (i) Quadruples (ii) Triples.	(7) (6)	Remember	BTL1
9.	(i) Describe in detail about addressing array Elements.(ii) Discuss in detail about Translation of array reference.		Remember	BTL1
10.	Describe in detail about types and declaration with suitable examples.	(13)	Remember	BTL1
11.	Compare three address code for expression with the Incremental translation.		Analyze	BTL4
12.	Show the intermediate code for the following code segment along with the required syntax directed translation scheme while ($i < 10$) if ($i \% 2 == 0$) evensum = evensum + i else oddsum = oddsum + i	(13)	Understand	BTL2
13.	(i) State the rules for type checking with example.(ii) Give an algorithm for type inference and polymorphic function.	(7) (6)	Remember	BTL1
14.	Illustrate an algorithm for unification with its operation.	(13)	Apply	BTL3
15.	Write down the SDD for constructing syntax tree for the expression a+b*5		Understand	BTL2
16.	Illustrate in detail about Bottom-up evaluation of S-attribute definitions	(13)	Apply	BTL3

17.	Explain the evaluation order for SDD	(13)	Evaluate	BTL5	
	PART-C(15 -MARKS)				
1.	Create the following uind the arithmetic expression a+- (b+c)* into (i)Syntax tree (ii)Quadruples (iii)Triples (iv)Indirect Triples	(15)	Create	BTL6	
2.	Explain what is SDD and examine syntax-directed definition to differentiate expressions formed by applying the arithmetic operators + and * to the variable x and constants ; expression : x * (3 * x + x * x)	(15)	Evaluate	BTL5	
3.	Generate an intermediate code for the following code segment with the required syntax-directed translation scheme. (i) if (a > b) x = a + b else x = a - b (ii) p>q AND r <s or="" u="">r</s>	(7) (6)	Create	BTL6	
4.	What is Type conversion? What are the two types of type conversion? Formulate the rules for the type conversion.	(15)	Evaluate	BTL5	
5.	Explain the specification of a simple Type Checkers	(15)	Evaluate	BTL5	
	UNIT IV- RUN-TIME ENVIRONMENT AND COD	EGF			
	ge Organization, Stack Allocation Space, Access to Non-lo gement - Issues in Code Generation - Design of a simple Code G PART-A (2 -MARKS)	ocal	Data on the		Heap
1.	List out limitations of the static memory allocation.		Remember		
1.			кешенноег	BTL1	
2.	How the storage organization for the run-time memory is		Apply	BTL1 BTL3	
2. 3.	How the storage organization for the run-time memory is organized?				
	How the storage organization for the run-time memory is		Apply	BTL3	
3.	How the storage organization for the run-time memory is organized? What is heap allocation?		Apply Remember	BTL3 BTL1	
3. 4.	How the storage organization for the run-time memory is organized? What is heap allocation? How the activation record is pushed onto the stack.		Apply Remember Apply	BTL3 BTL1 BTL3	
3. 4. 5.	How the storage organization for the run-time memory is organized?What is heap allocation?How the activation record is pushed onto the stack.Analyze the storage allocation strategies.		Apply Remember Apply Analyze	BTL3 BTL1 BTL3 BTL4	
3. 4. 5. 6.	How the storage organization for the run-time memory is organized?What is heap allocation?How the activation record is pushed onto the stack.Analyze the storage allocation strategies.State the principles for designing calling sequences.		Apply Remember Apply Analyze Remember	BTL3 BTL1 BTL3 BTL4 BTL1	
3. 4. 5. 6. 7.	How the storage organization for the run-time memory is organized?What is heap allocation?How the activation record is pushed onto the stack.Analyze the storage allocation strategies.State the principles for designing calling sequences.List out the dynamic storage techniques.		Apply Remember Apply Analyze Remember Remember	BTL3 BTL1 BTL3 BTL4 BTL1 BTL1	
3. 4. 5. 6. 7. 8.	How the storage organization for the run-time memory is organized?What is heap allocation?How the activation record is pushed onto the stack.Analyze the storage allocation strategies.State the principles for designing calling sequences.List out the dynamic storage techniques.Define the non-local data on stack.		Apply Remember Apply Analyze Remember Remember Remember	BTL3 BTL1 BTL3 BTL4 BTL1 BTL1 BTL1	
3. 4. 5. 6. 7. 8. 9.	 How the storage organization for the run-time memory is organized? What is heap allocation? How the activation record is pushed onto the stack. Analyze the storage allocation strategies. State the principles for designing calling sequences. List out the dynamic storage techniques. Define the non-local data on stack. Define variable data length on the stack. 		Apply Remember Apply Analyze Remember Remember Remember Remember	BTL3 BTL1 BTL3 BTL4 BTL1 BTL1 BTL1 BTL1	
3. 4. 5. 6. 7. 8. 9. 10.	 How the storage organization for the run-time memory is organized? What is heap allocation? How the activation record is pushed onto the stack. Analyze the storage allocation strategies. State the principles for designing calling sequences. List out the dynamic storage techniques. Define the non-local data on stack. Define variable data length on the stack. Differentiate between stack and Heap allocation 		Apply Remember Apply Analyze Remember Remember Remember Remember Analyze	BTL3 BTL1 BTL3 BTL4 BTL1 BTL1 BTL1 BTL1 BTL1 BTL4	
3. 4. 5. 6. 7. 8. 9. 10. 11.	 How the storage organization for the run-time memory is organized? What is heap allocation? How the activation record is pushed onto the stack. Analyze the storage allocation strategies. State the principles for designing calling sequences. List out the dynamic storage techniques. Define the non-local data on stack. Define variable data length on the stack. Differentiate between stack and Heap allocation Distinguish between static and dynamic storage allocation. Discuss the main idea of Activation tree. Give the fields in an Activation record. 		Apply Remember Apply Analyze Remember Remember Remember Analyze Understand Understand	BTL3 BTL1 BTL3 BTL4 BTL1 BTL1 BTL1 BTL1 BTL1 BTL4 BTL2 BTL2 BTL2	
3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	 How the storage organization for the run-time memory is organized? What is heap allocation? How the activation record is pushed onto the stack. Analyze the storage allocation strategies. State the principles for designing calling sequences. List out the dynamic storage techniques. Define the non-local data on stack. Define variable data length on the stack. Differentiate between stack and Heap allocation Distinguish between static and dynamic storage allocation. Discuss the main idea of Activation tree. 		Apply Remember Apply Analyze Remember Remember Remember Remember Analyze Understand Understand	BTL3 BTL1 BTL3 BTL4 BTL1 BTL1 BTL1 BTL1 BTL4 BTL2 BTL2	

	computer.		
16.	How would you solve the issues in the design of code generators?	Apply	BTL3
17.	Evaluate Best-fit and Next-fit object placement.	Evaluate	BTL5
	Prepare optimal code sequence for the given sequence	Create	BTL6
18.	t=a+b		
10.	t=t*c		
	t=t/d		
19.	Analyze the different forms of machine instructions.	Analyze	BTL4
20.	Discuss the four principle uses of registers in code generation.	Understand	BTL2
21	Examine what is the input to code generator.	Analyze	BTL4
22	What are the advantages and disadvantages of register	Understand	BTL2
	allocation and assignments?		
23	How the use of registers is subdivided into 2 sub-problems?	Evaluate	BTL5
24	Organize the contents of activation record.	Apply	BTL3
1	PART-B (13- MARKS)	A 1	
1.	(i)Illustrate the storage organization memory in the perspective (8)	Apply	BTL3
	of compiler writer with neat diagram.		
2	(ii)Compare static versus dynamic memory allocation. (5)	F 1	
2.	Explain in detail about the various issues in code generation with examples. (13)	Evaluate	BTL5
3.	(13) (i)Develop a quicksort algorithm to reads nine integers into an (9)		BTL6
5.	array a and sorts them by using the concepts of activation tree.	Cleale	DILO
4.	(ii)Give the structure of the action record. (4) How to a design a call sequences and analyze the principles of (13)	Apolyzo	BTL4
4.	activation records with an example.	Analyze	DIL4
5.	Discuss in detail about the activation tree and activation record (13)	Understand	BTL2
5.	with suitable example	Onderstand	DILZ
6.	(i) Analyze the data access without nested procedure and the (7)	Analyze	BTL4
0.	issues with nested procedure.	i mary 20	DILI
	(ii)Give the version of quicksort in ML style using nested (6)		
	procedure.		
7.	<u>x</u>	Understand	BTL2
	(ii)Describe in detail about the memory hierarchy of a (6)		
	computer		
8.	Define fragmentation? Describe in detail about how to reduce (13)	Remember	BTL1
	the fragment.		
9.	Write short notes on the following	Remember	BTL1
	i. Best fit and next object placement. (7)		
	ii. Managing and coalescing free space (6)		
10.	Examine the problems with manual deallocation of memory (13)	Remember	BTL1
	and explain how the conventional tools are used to cope with		
	the complexity in managing memory.		
11.	Explain in detail about instruction selection and register (13)	Analyze	BTL4
	allocation of code generation.		
12.	Illustrate in detail about the code generation algorithm with an (13)	Apply	BTL3

	example.	
13.	Discuss usage of stack in the memory allocation and discuss in (13) Understand	BTL2
15.	detail about stack allocation space of memory.	DILL
14.	Describe the heap management of memory manager and (13) Remember	BTL1
11.	locality of programs in detail .	DILI
15	Explain the problem that occurs in code generation with (13) Evaluate	BTL5
10	example	DILS
16	Illustrate the function of code generation algorithm in detail (13) Analyze	BTL3
17	Discuss in detail about access links, manipulation of access (13) Understand	BTL2
	links and access links for procedure	
	PART-C (15-MARKS)	
1.	Suppose the heap consists of seven chunks, starting at address (15) Evaluate	BTL5
	0. The sizes of the chunks, in order, are 80, 30, 60, 50, 70, 20,	
	40 bytes. When we place an object in a chunk, we put it at the	
	high end if there is enough space remaining to form a smaller	
	chunk (so that the smaller chunk can easily remain on the linked	
	list of free space). However, we cannot tolerate chunks of fewer	
	that 8 bytes, so if an object is almost as large as the selected	
	chunk, we give it the entire chunk and place the object at the low	
	end of the chunk. If we request space for objects of the following	
	sizes: 32, 64, 48, 16, in that order, what does the	
	free space list look like after satisfying the requests, if the	
	method of selecting chunks is a) First fit.b) Best fit.	
2.	Explain the stack and heap allocation of memory in detail with (15) Evaluate	BTL5
	suitable examples.	2120
3.	Generate code for the following sequence assuming that n is in (15) Create	BTL6
	a memory location	
	i=0	
	L1: if $I > n$ goto $L2$	
	s=s+i	
	i=i+1	
	goto L1	
	L2 :	
4.	Create following assignment statement into three address code (15) Create	BTL6
	D:=(a-b)*(a-c)+(a-c)	
	Apply code generation algorithm to generate a code sequence	
	for the three address statement.	
5	The following program is used to compute Fibonacci numbers(15) Evaluate	BTL5
	recur•sively. Suppose that the activation record for f includes	_
	the following elements in order: (return value, argument n, local	
	s, local t); there will normally be other elements in the activation	
	record as well. The questions below assume that the initial call	
	is f(5).	

			-
	int t, s;		
	if $(n < 2)$ return 1;		
	s = f(n-1);		
	t = f(n-2);		
	return s+t;		
	}		
	a)Show the complete activation tree.		
	b) What dose the stack and its activation records look like the		
	first time f(1) is about to return?		
	c) What does the stack and its activation records look like the		
	fifth time f(1) is about to return?		
.	UNIT V- CODE OPTIMIZATION		
	bal Sources of Optimization – Peep-hole optimization - DAG- Opti	mization of Bas	1c Blocks
Globa	Data Flow Analysis - Efficient Data Flow Algorithm.		
	PART-A (2 -MARKS)		
1.	List out the examples of function preserving transformations.	Remember	BTL1
2.	Illustrate the concepts of copy propagation.	Apply	BTL3
3.	State the use of machine Idioms.	Remember	BTL1
4.	Show the flow graph for the quicksort algorithm	Apply	BTL3
5.	Apply	Apply	BTL3
6.	Identify the constructs for optimization in basic block.	Remember	BTL1
7.	List out the properties of optimizing compilers.	Remember	BTL1
8.	Define the term data flow analysis.	Remember	BTL1
9.	How is liveness of a variable calculated? Identify it.	Analyze	BTL4
10.	What is DAG? Point out advantages of DAG.	Analyze	BTL4
11.	Give the uses of gen and Kill functions	Understand	BTL2
12.	Discuss the concepts of basic blocks and flow graphs.	Understand	BTL2
13.	Give the main idea of constant folding.	Understand	BTL2
14.	Prepare the three address code sequence for the assignment	Create	BTL6
	statement.		
	d:= (a-b) + (a-c) + (a-c).		
15.	Construct and explain the DAG for the follow basic block.	Evaluate	BTL5
	d := b * c		
	e:=a+b		
	$b := b^*c$		
	a := e - d.		
16.	What role does the target machine play on the code generation	Analyze	BTL4
	phase of the compiler? Analyze it.	-	
17.	Draw the DAG for the statement $a = (a*b+c) - (a*b+c)$ and	Evaluate	BTL5
	evaluate it.		
18.	Develop the code for the follow C statement assuming three	Create	BTL6
	registers are available.		
	x = a / (b + c) - d * (e + f)		
19.	Point out the characteristics of peephole optimization.	Analyze	BTL4
<u>k</u>	Define algebraic transformations. Give an example	Understand	BTL2

21	What is a flow graph?		Remember	BTL1
22	What is dead code elimination? Give example.		Understand	BTL2
23	Show an example for code motion.		Apply	BTL3
24	How the strength reduction is applied in code optimization?		Evaluate	BTL5
21	PART-B(13 MARKS)		L'uluite	DILU
1.	Explain briefly about the principal sources of optimization.	(13)	Evaluate	BTL5
		(10)		2120
2.	(i).Explain in detail about optimization of basic blocks.	(5)	Analyze	BTL4
2.	(ii).Construct the DAG for the following Basic block &	(3)	r mary 20	DILI
	explain it.	(0)		
	t1: = 4 * i			
	t2:= a[t1]			
	$t_3 = 4 * i$			
	t4:= b [t3]			
	t5:=t2*t4			
	t6:=Prod+t5			
	Prod:=t6			
	t7:=i+1			
	i:= t7			
	if i<= 20 goto (1).			
3.	Discuss the following in detail		Understand	BTL2
	(i)Semantic preserving transformation	(7)		
	(ii)Global Common subexpression	(6)		
4.	Write about the following in detail		Remember	BTL1
	(i)copy propagation	(5)		
	(ii)Dead code Elimination	(3)		
	(iii)code motion			
5.	Explain in detail about the data-flow schemas on basic block	(13)	Analyze	BTL4
	and the transfer equations for reaching definitions with			
	example			
6.	(i) Illustrate the Iterative algorithm for reaching definitions		Apply	BTL3
	(ii)Discuss the live variable analysis	(6)		
7.	Analyze Peephole optimization with suitable examples.	, ,	Analyze	BTL4
8.	Demonstrate optimization of Basic Blocks with an example.		Apply	BTL3
9.	(i)Discuss in detail about how to find Local Common Sub	(8)	Understand	BTL2
	expressions.			
10	(ii)Discuss in detail about the Use of Algebraic Identities.	(5)		
10.	(i)Describe in detail about the flow of control optimization.	(7)	Remember	BTL1
	(ii)Identify the methods to eliminate the unreachable code,	$(\cap$		
11	load and store data.	$\frac{(6)}{(5)}$	D a ma1	
11.	(i)Give an example to identify the dead code in the DAG.		Remember	BTL1
	(ii)Describe the representation of array using DAG with	(8)		
10	example.	(10)	TTuden (1	
12.	Summarize in detail about the dataflow analysis of available	(13)	Understand	BTL2
10	expression with suitable example.	(7)	Creati	
13.	(i)Formulate steps to identify the loops in the basic block.	(7)	Create	BTL6

	(ii) Describe about induction variable and end reduction in	(6)		
	strength			
14.	Describe the efficient data flow algorithms in detail.	(13)	Remember	BTL1
15	Explain in detail about optimization method performed on a small set of compiler generated instructions	(13)	Evaluate	BTL5
16	Discuss in detail about structure preserving transformation in detail	(13)	Understand	BTL2
17	Illustrate in detail about DAG Representation of basic block and Write algorithm for DAG Construction.	(13)	Apply	BTL3
	PART-C(15 MARKS)			
1.	Create DAG and three – address code for the following C	(15)	Create	BTL6
1.	program. (15) i = 1; s = 0; while ($i <= 10$) { s = s + a[i] [i]; i = i + 1;	(13)	Create	DILO
2.	}		Create	BTL6
	Identify the loops of the flow graph Identify the global common sub expression for each loop Identify loop invariant computation for each loop			

3.		(15)	Evaluate	BTL5
5.	ENTRY	(15)	L' vuluite	
	$(1) = 1$ B_1			
	(2) b - 2			
	(3) c - a+b			
	B_3 (5) d = b+d			
	(8) b - a+b B ₅			
	$B_4 \begin{array}{c} (6) d = a + b \\ (7) e = e + 1 \end{array} \begin{array}{c} (9) e = c - a \end{array}$			
	$\begin{array}{c} (10) \mathbf{a} - \mathbf{b}^* \mathbf{d} \\ (11) \mathbf{b} - \mathbf{a} - \mathbf{d} \end{array} \xrightarrow{B_6}$			
	(1) 5 - 8-9			
	EXIT			
	Compute the grn and Kill sets for each Block			
	In and Out sets for each block			
	Compute e_gen and e_kill	(15)	Evelvete	BTL5
	Evaluate the available expressions on the following code by converting into basic blocks and compute global common sub	(13)	Evaluate	DILJ
	-expression elimination. (15)			
	$\mathbf{i} = 0$			
	a:= n-3			
	if $i < a$ then loop else end			
	label loop			
	b:=i-4 $c:=p+b$			
	$\mathbf{d} := \mathbf{M}[\mathbf{c}]$			
	e:=d-2			
	f:=i-4			
	g:=p+f			
	m[g]:=e			
	i:=i+1 a:=n-3			
	if $i < a$ then loop else end			
	label end			
	Evaluate the Depth-first Ordering in iterative Algorithm and	(15)	Evaluate	BTL5
	structure -Base Data flow Analysis in detail			