
 

 

 

UNIT III PUBLIC KEY CRYPTOGRAPHY 9 MATHEMATICS OF ASYMMETRIC 
KEY CRYPTOGRAPHY 

 
 

TOPICS: PUBLIC KEY CRYPTOGRAPHY MATHEMATICS OF ASYMMETRIC KEY 

CRYPTOGRAPHY: Primes – Primality Testing – Factorization – Euler‘s totient function, Fermat‘s and Euler‘s 

Theorem - Chinese Remainder Theorem – Exponentiation and logarithm ASYMMETRIC KEY CIPHERS: RSA 

cryptosystem – Key distribution – Key management – Diffie Hellman key exchange - ElGamal cryptosystem – 

Elliptic curve arithmetic-Elliptic curve cryptography. 
 

 
Prime numbers 

PRIME NUMBERS 

Prime numbers have divisors of 1 and its number itself. 
 
Prime factorisation 
To compute GCD of any two numbers in prime factorization approach we need to 
find prime factors of the two numbers. 

 
Fermat Theorem or Fermat’s little theorem 

 
If a belongs to integer , P is a prime number that does not divide a 

then a 
P 

congruent a (mod P) 

ie., a 
p 

≡ a (mod P) 

In special case 

a
P-1 

≡ 1 (mod P) if GCD(a,P)=1 . where a and p are coprime. 

It is mainly used to solve modular exponentiation. 

Eg. Compute the value of 2 
10 

mod 11 

2 
10 

≡ 1 (mod 11) 

Eg. Compute the value of 2 
340 

mod 11 
340 

)=(2 
10 34 

) mod 11 

=1 
34 

mod 11=> 1 

//Proof. 
Take division algorithm 
a = p.q + r where can be 0<= r <= p-1 

let g.c.d (a,p ) ie coprime 
a is not divisible by p hence 1<= r <=p-1 
fact says that if a leaves remainder r where 1<= r<= p-1 on dividing by p then ka,1<= 
k<= p-1 also leaves remainders from 1 to p-1. 
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Means 
If a,2a,3a,…(p-1)a surely gives remainders 1,2,3,…(p-1) 
So if multiply 
a*2a*3a*…*(p-1)a ≡ 1.2.3…(p-1) (mod p) 

hence  a 
p-1

.(p-1)!  ≡ (p-1)! (mod p) 
which returns 

a 
p-1 

≡ 1 (mod p) [as mod p cannot divide (p-1)!] 
hence proved. // 

Eg.6 
10 

mod 11 

Sol. 6 
11-1 

mod 11 

= 1 [as per theorem] 

Eg. 5 
15 

mod 13 

=(5
2 

mod 13) * (5 
13 

mod 13) 

=(25 mod 13) * 5 
=(12 * 5) mod 13 
=60 mod 13 
=8. 

 
 
 

Euler’s theorem 
 

If n and a are coprime positive intergers 

then a 
phi(n) 

≡1 (mod )n 
In this theorem phi(n) = n-1. 
n is prime number and phi(n) is Euler‘s phi function. 
Euler‘s phi function is also called Euler‘s totient function and hence named as 
Euler‘s totient theorem or Euler‘s theorem. 

 
Euler’s phi function or Euler’s totient function( 

 

Euler‘s phi function phi (n) returns the numbers of integers from 1 to n,that are relatively 
prime to n. 
The phi function is computed phi(n) using various methods. They are 

 
1.If n is a prime number then phi (n) = n-1 
2.If n is a composite number then 

2.1 Find the prime factors of that number and compute the phi function value as 
used in step 1.otherwise 

2.2.Find prime powers (p 
n
)of the given number n. For computing the phi value of 

prime powers we have to use the formula 

(p 
a 

– p 
a-1

).
 

 

Eg. Compute Eulers‘s totient function for the values 3,8 
1. phi(3)=3-1=2 
2. phi(8)= 2

3
 

= 2
3 

-   
3-1 a 

2 ( since p – p 
a-1 3 2 = 

) =2  - 2 8–4=4 



 

Primality Testing Methods 
 

Primality testing method is a method to find and to prove whether the given number 
is prime number. 

 
1. Naive Algorithm: 

Naïve Algorithm is used to divide the given input number P by all the integers 
starting from 2 to root of P – 1 
If any one of them is a divisor, then the input number P is not a prime. Otherwise, it 
is considered as a prime number 

 
Algorithm: 

1. Pick any integer P that is greater than 2 

2. Try to divide P by all integers starting from 2 to the square root of P 

3. If P is divisible by any one of these integer, we can conclude that P is a 

composite 

4. Else P is a prime number 
 

Example: 
Find the primality test for the number 100 using naïve algorithm. 
1. P=100 

2. 2,3,4,5,6,7,8,9 

3. Case 1: 100/2 = 50(composite) 

Therefore, 100 is not a prime number. 

2. Fermat’s Primality Test: 
 

If P is a prime and P does not divide a, which is a natural number then 

a
P-1 

≡ 1(mod P) 

Example: 

Check whether the given number 12 is prime number or not using Fermat‘s 
theorem 

Given P = 12 
To check whether 12 is prime number or not, we have to check 

a
P-1 

≡ 1(mod P) 
a

12-1 
≡ 1(mod 12) 

a
11 

≡ 1(mod 12) 
Where 1 <= a < 12 

We have to calculate a 
11 

mod 12 



 

 

If it is equal to 1, then it is called prime number. Otherwise, it is called 
composite number. 

Consider, a = 5 

5
11 

≡1 (mod 12) 

(i.e) 5 
11 

mod 12=5 
It is not equal to 1 
Therefore it is not a prime number 

3. Miller – Rabin Primality Test 

Function Miller-Rabin (x) 
w 

x-1 = (2 )y //x is the input number for primality test 
// y is 

 
select a randomly in the range [2, (x-1)] 

y 
Z = a mod x 
if Z congruent 1 (mod x) then return prime 
for i = 1 to w – 1 
{ 
If Z congruent -1 (mod x) then return prime 

2 
Z = Z mod x 
} 
return composite 

 
 

Example: 
Find the primality for 7 
x = 7 1 
As per algorithm, x – 1 = 7 – 1 = 6 = 2 x 3 
x = 7, w = 1, y = 3 

y 
Z = a mod 7 
a = 2 ( randomly), where [1<=a<=x-1] 

3 
Z = 2 mod 7 = 1 
Value of Z = 1, 7 is concluded as prime number 

 

Chinese Remainder Theorem 
 

States that when the moduli of a system of linear congruencies are pairwise prime, there 
is a unique solution of the system modulo, the product of the moduli. 

x ≡ a (mod m). 
Chinese mathematician Sun Tsu Suan-Ching asking the following problem: 

―There are certain things whose number is unknown. When divided by 3, the 
remainder is 2; when divided by 5, the remainder is 3; and when divided by 7, the 
remainder is 2. What will be the number of things? 

(Otherwise) Mangos are divided into groups consisting of 3 mangos in each group 
remaining is 2. If the mangos are divided into groups consisting of 5 mangos in each 
group remaining 3. 

If mangos are divided into groups consisting of 7 mangos in each group 
remaining 2.Totally how many mangos are available? 

 
x ≡ a1 mod(m1)

 
x ≡ a2 mod(m2)

 
x ≡ a3 mod(m3)





 

 

x = Σ(aiMiyi) = (a1 M1 y1 + a2 M2 y2 + a3 M3 y3) mod M 

Let M1, M2, …, Mn be (pairwise) relatively prime numbers. Then the system: 
Step1: Calculate M 

 
M = m1*m2*m3 … mn.

Step 2: Calculate Mk =M/mk 

Step 3: Find Inverse of MK (ie)yk 

Find the X using CRT 



x ≡ 2 mod(3) 

 
x ≡ 3 mod(5)

 
x ≡ 2 mod(7)

a1 = 2, a2 = 3, a3 = 2; m1 = 3, m2 = 5, m3 = 7; 

i. M = m1 x m2 x m3 = 105. 

ii. For each equation calculate 

Mk =M/mk (ie) M1 = M / m1 = 105 / 3 = 35 

M2   = M / m2 = 105 / 5 = 21 

M3 = M / m3 = 105 / 7 = 15 

 
iii. inverse of Mk (ie) yk 

inverse of M1 (ie) y1 = 35 
-1 

mod (3) = 35 
3-2 

mod (3) =2 [since Fermat’s inverse 
theorem or easy inverse method like 35 x ? mod 3=1 (ie) 2] 

 

y2 =1 ; y3 =1 

X = Σ(aiMiyi) = (a1 M1 y1 + a2 M2 y2 + a3 M3 y3) mod M 
X =[ (2 x 35 x 2) + (21 x 3 x 1) + (2 x 15 x 1)] mod 105 

= (140 + 63 + 30) mod 105 
=233 mod 105 

X =23 
 

Exponentiation 



Exponentiation is a type of operation where two elements are used in which one 
element is considered as a base element and another as an exponential element. 



For example, b is an example of exponential operation where x is a base element 
and y is an exponential element. 



When y is a positive integer, exponentiation is performed in a similar way to repeated 
multiplication is performed. 


Modular exponentiation is a type of exponentiation in which a modulo division 
operation is performed after performing an exponentiation operation. 

 
For example, (x

y 
mod n), where n is an integer number.



The exponentiation is an important concept discussed in many cryptographic 
algorithms such as RSA, Diffie-Hellman, Elgamal, etc., 

 
Example:1 
11

7 
mod 13 

11
2 

mod 13 = 121 mod 13 = 4 

11
4 

mod 13 = (11
2 

mod 13 x 11
2 

mod 13) mod 13 



 

 

= (4 x 4) mod 13 
= 16 mod 13 
= 3 

 

 

 

11
7 

mod 13 = (11
4 

mod 13 x 11
2 

mod 13 x 11
1 

mod 13) mod 13 

= (3 x 4 x 11) mod 13 
= (132) mod 13 
= 2 

 

Find the result of 2
90 

mod 13. 

Solution: 

Step 1: Split x and y into smaller parts using exponential rules as shown below: 

2
90 

mod 13 = 2
50 

x 2
40

 
Step 2: Calculate mod n for each part 

2
40 

mod 13 = 1099511627776 mod 13 = 3 
S

9
te
0
p 3: Use mod

5
u
0
lar m

4
u
0

ltiplication properties to combine these 2 parts, we have 
2 mod 13 = (2 x 2 ) mod 13 

= (2
50 

mod 13 x 2
40 

mod 13) mod 13 

= (4 x 3)mod 13 = (12) mod 13 = 12 
 
Logarithms or Indices 

 

• Discrete logarithms are logarithms defined with regard to multiplicative cyclic 
groups. If G is a multiplicative cyclic group and g is a generator of G, then from 
the definition of cyclic groups, we know every element h in G can be written as 

x 
g for some x. The discrete logarithm to the base g of h in the group G is defined 

to be x . 

• For example, if the group is Z5
*
, and the generator is 2, then the 

4 
discrete logarithm of 1 is 4 because 2 ≡ 1 mod 5. 

• Input: p - prime number, a- primitive root of p, b - a residue mod p. 

• Goal: Find k such that a
k
 

2 
= b( mod p). (In other words, find the position of y in 

q-1 

the large list of {a, a , . . . , a }. 

• 14 is a primitive root of 19. 

• For example L14(5) = 10 mod 19, because 14
10 

= 5( mod 19). 

• the inverse problem to exponentiation is to find the discrete logarithm of a 

number modulo p 

x 
that is to find x where a = b mod p 

• written as x=loga b mod p or x=inda,p(b) 

• if a is a primitive root then always exists 

 
ASYMMETRIC KEY CIPHERS 

• 



 

 

PUBLIC KEY CRYPTOGRAPHY: 

Principles of public key cryptosystems 

The concept of public key cryptography evolved from an attempt to attack two of the 
mostdifficult problems associated with symmetric encryption. Key distribution under 
symmetric key encryption requires either 

(1) Two communicantsalready share a key, which someone has been distributed to them 

(2) The use of a key distribution center. 

• Digital signatures. 

 
Characteristics of Public key cryptosystems 

 
Public key algorithms rely on one key for encryption and a different but related key for 
decryption.These algorithms have the following important characteristics: 

• It is computationally infeasible to determine the decryption key given only the 
knowledgeof the cryptographic algorithm and the encryption key. 



 

 

In addition, some algorithms, such as RSA, also exhibit the following characteristic: 

• Either of the two related keys can be used for encryption, with the other used 
for decryption. 

INGREDIANTS OF PUBLIC KEY CRYPTOGRAPHY 

1. Plaintext: This is the readable message or data that is fed into the algorithm as input. 

2. Encryption algorithm: The encryption algorithm performs various transformations on the 
plaintext. 

3. Public and private keys: This is a pair of keys that have been selected so that if one is used 
for encryption, the other is used for decryption. The exact transformations performed by the 
algorithm depend on the public or private key that is provided as input. 

4. Ciphertext: This is the scrambled message produced as output. It depends on the plaintext 
and the key. For a given message, two different keys will produce two different cipher texts. 

5. Decryption algorithm: This algorithm accepts the ciphertext and the matching key and 
produces the original plaintext. 

 
Encryption: 

 
The essential steps are the following: 

1. Each user generates a pair of keys to be used for encryption and decryption 
of messages. 

2. Each user places one of the two keys in a public register or other accessible file. 
This is the public key. The companion key is kept private. 

3. If A wishes to send a confidential message to B, A encrypts the message using 
B"s public key. 

4. When B receives the message, it decrypts using its private key. 

 
 

With this approach(Fig), all participants have access to public keys and private keys are generated 
locally by each participant and therefore, need not be distributed. 

 

Fig . Public Key Cryptography For Authentication 
Let the plaintext be X=[X1, X2. X3, . .,X ] where m is the number of letters in some finite 

alphabets. Suppose A wishes to send a message to B. 

B generates a pair of keys: a public key KUb and a private key KRb KRb is known only to 

B, whereas KUb is publicly available and therefore accessible by A. 

With the message X and encryption key KUb as input, A forms the cipher text Y=[Y1, Y2, Y3› 

.    Y n] • 
 

i.e., Y=EKUb(X) 



 

 

 
 

 

The receiver can decrypt it using the private key KRb i.e., X=D KRb(Y) 
 

The other approach (using sender―s private key for encryption and sender―s public key for 

decryption) will provide authentication which is illustrated in the following diagram(Fig 2.26). 

 
 

 

 

Fig .Private Key Cryptography For Authentication 

 

The encrypted message serves as a digital signature. It is important to emphasize that the 
encryption process just described does not provide confidentiality. 
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Differences between public key Encryption and conventional Encryption 
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Public Key Cryptography for Security 

There is some source A that produces a message in plaintext, X —— [X 1, +2, . ,X ]. The 
elements of X are letters in some finite alphabet. 

 
The message is intended for destination B. B generates a related pair of keys: a public 

key, PUT, and a private key, PRb PRtis known only to B, whereas PL/his publicly available and 
therefore accessible by A. With the message and the encryption key PL/,as input, A forms the 
ciphertext Y =[Y 1. Yo. . ,YN] 

Y= E(PUB,X) 

Figure.PubIic-Key Cryptosystem: Secrecy 



 

 

 
 
 

The intended receiver, in possession of the matching private key, is able to invert 
the transformation: 

X—— D (PRd› 

An adversary, observing Y and having access to PUT, but not having access to PRbor X, 
must attempt to recover X and/or PRb It is assumed that the adversary does have knowledge of the 
encryption (E) and decryption (D) algorithms. 

If the adversary is interested only in this particular message, then the focus of effort is to 

recover A by generating a plaintext estimate X *. Often, however, the adversary is interested in 

being able to read future messages as well, in which case an attempt is made to recover PRtby 

generating an estimate PRb. 

Y = E(PRa1) 

X = D(PUa1 Y) 

In this case, A prepares a message to B and encrypts it using A‘s private key before 
transmitting it. B can decrypt the message using A‘s public key. Because the message was 
encrypted using A‘s private key, only A could have prepared the message. 

 
Therefore, the entire encrypted message serves as a digital signature. In addition, it is 

impossible to alter the message without access to A‘s private key, so the message is authenticated 
both in terms of source and in terms of data integrity. 

 
 

 

Figure .Public-Key Cryptosystem: Authentication 

 
It is important to emphasize that the encryption process depicted in above Figures does not 

provide confidentiality. That is, the message being sent is safe from alteration but not from eaves 
dropping. This is obvious in the case of a signature based on a portion of the message, because 
the rest of the message is transmitted in the clear. Even in the case of complete encryption, as 
shown in Figure13, there is no protection of confidentiality because any observer can decrypt the 
message by using the sender‘s public key. 

 
Authentication and Secrecy 

It is, however, possible to provide both the authentication function and confidentiality by a 
double use of the public-key scheme (Figure 2.29): 

 
Ciphertext Z = EKUb[EKRa (X)] 



 

 

 
 

Plaintext X = EKUa[EKRb (Y)] 
 
 

Figure .PubIic-Key Cryptosystem: Authentication and Secrecy 
 

Initially, the message is encrypted using the sender―s private key. This provides the digital 

signature. Next, we encrypt again, using the receiver―s public key. The final ciphertext can be 

decrypted only by the intended receiver, who alone has the matching private key. Thus 

confidentiality is provided. 

 

 
Applications for Public-Key Cryptosystems 

 
We can classify the use of public-key cryptosystems into three categories 

 
1. Encryption /decryption: The sender encrypts a message with the recipient‘s public key. 

 
2. Digital signature: The sender ―signs" a message with its private key. Signing is achieved by 

a cryptographic algorithm applied to the message or to a small block of data that is a function 
of the message. 

3. Key exchange: Two sides cooperate to exchange a session key. Several different 
approaches are possible, involving the private key(s) of one or both parties. 

 
Requirements for public key cryptography 

 
• It is computationally easy for a party B to generate a pair [KUb ,KRb] 

• It is computationally easy for a sender A, knowing the public key and the message to be 

encrypted M, to generate the corresponding ciphertext: C=EKUb(M). 

• It is computationally easy for the receiver B to decrypt the resulting ciphertext using 
the private key to recover the original message: 

 
M = DKRb (C) = DKRb [E KUb (M)] 

 
• It is computationally infeasible for an opponent, knowing the public key KUb, to 

determine the private key KRb 
• It is computationally infeasible for an opponent, knowing the public key KUb, and a 

ciphertext C, to recover the original message M. 

• The encryption and decryption functions can be applied in either order: 

M = EKUb [D KRb (M) = DKUb [E KRb (M)] 



 

 

 
 

Public-Key Cryptanalysis 

Attack Type 1 : 

The public-key encryption scheme is vulnerable to a brute-force attack; therefore use large 
key.The tradeoff is that makes use of some sort of invertible mathematical function. 

Therefore choose key size such that the brute force attack is not possible, at the same 
time should not be too slow for general use. 

Attack type 2: 

Attack is of other types (i.e.) given the algorithm and the public key deduce private key. This 
method has not been successful till date. 

Attack Type 3: 

 
A probable-message attack. When a confidential message is to be transmitted using 

DES,the attacker will find all 2
56 

possible keys using the public key and discover the encrypted 
key by matching the generated cipher text and the actual cipher. This attack can be avoided by 
appending some random bits to the message. 

 
RSA ALGORITHM 

It was developed by Rivest, Shamir and Adleman. This algorithm makes use of an 

expression with exponentials. Plaintext is encrypted in blocks, with each block having a binary value 

less than some number n. 

The RSA scheme is a cipher in which the plaintext and cipher text are integers between 0 

and n - 1 for some n. A typical size for n is 1024 bits, or 309 decimal digits. That is, n is less than 

2 1024 

That is, the block size must be less than or equal to Iog 2 (n); in practice, the block size is 
k 

k-b its, where 2 < n < 2 
k 1 
* . Encryption and decryption are of the following form, for some plaintext 

block M and ciphertext block C: 
e
 

c = M 
d 

 
mod n 

e d e 

M = C mod n = (M ) mod n = M * mod n 

 

Both the sender and receiver know the value of n. the sender knows the value of e and 
only the receiver knows the value of d. thus, this is a public key encryption algorithm with a public 
key of KU = {e, n) and a private key of KR = {d, n}. For this algorithm to be satisfactory for public 
key encryption, the following requirements must be met: 

1. It is possible to find values of e, d, n such that M
ed 

= M mod n for all M < n. 

2. It is relatively easy to calculate M
e 

and C
d 

for all values of M < n. 

3. It is infeasible to determine d given e and n. 
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Fig . The RSA Algorithm 

Let us focus on the first requirement. We need to find the relationship of the form: 

ed 
M = M mod n 

 
Given two prime numbers p and q and two integers, n and m, such that n=pq and 0<m<n, and 
arbitrary integer k, the following relationship holds 

 
k6 (n) +1 k(p-1)(q-1) +1 

m mod n 

 
where 6(n) — Euler totient function, which is the number of positive integers less than n 
and relatively prime to n. we can achieve the desired relationship, if 

 

 
This is equivalent to saying: 

ed = k6(n)+1 
 

ed - 1 mod 6(n) 
1 

d = e- mod 6(n) 
 

That is, e and d are multiplicative inverses mod 6(n). According to the rule of modular arithmetic, 
this is true only if d (and therefore e) is relatively prime to 6(n). Equivalently, gcd(6(n), d) = 1. 

 
 

We are now ready to state the RSA scheme. The ingredients are the following: 
p, q, two prime numbers (private, chosen) 
n —— pq (public, calculated) 

e, with gcd(6 (n), e) = 1; 1 <e < 6 (n) (public, chosen) 

d-Ke-1 (mod 6 (n)) (private, calculated) 

The steps involved in RSA algorithm for generating the key are 

• Select two prime numbers, p = 17 and q = 11. 



 

 

 
 
 

Calculate n = p*q = 17*11 = 187 

Calculate 6(n) = (p-1)(q-1) = 16*10 = 160. 

Select e such that e is relatively prime to 6(n) = 160 and less than 6(n); we choose 
 

Determine d such that de K 1 (mod 160) and d < 160.The correct value is d —— 23, 
because 23 • 7 = 161 = (1 • 160) + 1; d can be calculated using the extended Euclid‘s 
algorithm 

 

The resulting keys are public key PU —— {7, 187} and private key PR —— {23, 187}. 
 

The example shows the use of these keys for a plaintext input of M—— 88. For encryption, 
we need to calculate C = 887 mod 187. 

 

Exploiting the properties of modular arithmetic, we can do this as follows. 

88
7 

mod 187 = [(88
4 

mod 187) • (88
2 

mod 187)x (88
1 

mod 187)] mod 187 
881 mod 187 = 88 
88

2 
mod 187 = 7744 mod 187 = 77 

88
4 

mod 187 = 59,969,536 mod 187 = 132 

88
7 

mod 187 = (88 • 77 • 132) mod 187 = 894,432 mod 187 = 11 

For decryption, we calculate M —— 1123 mod 187: 

11
23 

mod 187 = [(11
1 

mod 187) • (11
2 

mod 187) • (11
4 

mod 187)• (11‘ mod 187) • 

(11 mod 187)] mod 187 
11 mod 187 = 11 

mod 187 = 121 
11 mod 187 = 14,641 mod 187 = 55 

11
8 

mod 187 = 214,358,881 mod 187 = 33 

11
23 

mod 187 = (11 • 121 • 55 • 33 • 33) mod 187 = 79,720,245 mod 187 = 88 
 
 
 
 
 
 
 
 
 
 

Fig . Example of RSA Algorithm 

Security of RSA: 
 

There are three approaches to attack the RSA: 
1. Brute force: This involves trying all possible private keys. 
2. Mathematical attacks: There are several approaches, all equivalent in effort to 

factoring the product of two primes. 
3. Timing attacks: These depend on the running time of the decryption algorithm. 



 

 

 
 

Type 1 RSA Attack: Defense to Brute Force attack: 

 
Use large key space (i.e) large number of bits in e and d the better secured but problems are, 

1. Increases computing power 
2. Factoring Problem 

 
Type 2 RSA Attack: Mathematical Attack: 

Mathematical approach takes 3 forms: 

• Factor n = p*q, hence find 6(n) and then d. 

 
• Determine 6(n) directly without determining p and q and find 

1 
d. d=e- (mode (n)) 

• Find d directly, without first determination 6(n). 

 
Type 3 RSA Attack: Timing attacks: 

 
This attack is learning for 2 reasons 

1. Comes completely from unexpected direction 
2. Cipher text only attack 

 
 

Attack: 

If the system does lastly the modular multiplication in majority of cases but takes longer 
time in few cases. The average is also longer. 

The attack is done bit by bit 
Start with left most bit b„ 
Suppose first j bits are known. 

For a given cipher text the attacker completes the j iteration. 
If the bit is set then d<- (d * a) mod n. 

 
Methods to overcome Timing attacks: 

 
1. Constant exponentiation time: All exponentiations take the same amount of time before 

returning a result. This is a simple fix but does degrade performance. 

2. Random delay: Better performance could be achieved by adding a random delay to the 
exponentiation algorithm to confuse the timing attack. 

3. Blinding: Multiply the cipher text by a random number before performing exponentiation. 
This process prevents the attacker from knowing what cipher text bits are being processed 
inside the computer and therefore prevents the bit-by-bit analysis essential to the timing 
attack. 

 
KEY MANAGEMENT 

There are two uses of public key cryptography regarding the issues of key distribution. They are 
1. Distribution of public keys 
2. Use of public key encryption to distribute secret keys 

 
Distribution of Public Keys 



 

 

 
 

Several techniques have been proposed for the distribution of public keys. Virtually all 
these proposals can be grouped into the following general schemes: 

 

a) Public announcement 
b) Publicly available directory 
c) Public-key authority 
d) Public-key certificates 

 

(a) Public Announcement of Public Keys 
 

In public-key encryption the public key is public. Thus, if there is some broadly accepted 
public-key algorithm, such as RSA, any participant can send his or her public key to any other 
participant or broadcast the key to the community at large as shown in Figure 2.32. 

 
 
 

 

 

Figure. Uncontrolled Public-Key Distribution 
Disadvantage: 

 

Anyone can forge such a public announcement. That is, some user could pretend to 
be user A and send a public key to another participant or broadcast such a public key. 

Until such time as user A discovers the forgery and alerts other participants, the forger 
is able to read all encrypted messages intended for A and can use the forged keys for 
authentication. 

 

(b) Publicly Available Directory 
 

A greater degree of security can be achieved by maintaining a publicly available 
dynamic directory of public keys. Maintenance and distribution of the public directory would 
have to be the responsibility of some trusted entity or organization as shown in Figure 2.33. 
Such a scheme would include the following elements: 

 
1. The authority maintains a directory with a (name, public key} entry for each participant. 

2. Each participant registers a public key with the directory authority. Registration would 
have to be in person or by some form of secure authenticated communication. 

3. A participant may replace the existing key with a new one at any time, due to either the 
key has been used for a large amount of data, or the corresponding private key has 
been compromised in some way. 

4. Participants could also access the directory electronically. For this purpose, secure, 
authenticated communication from the authority to the participant is mandatory 



 

 

 

 

 
 

 
Figure Public-Key Publications 

 

Vulnerabilities: 

 
6 Tamper the records of public key directories. 

6 If an adversary succeeds in obtaining or computing the private key of the directory authority, 
the adversary could authoritatively pass out counterfeit public keys and impersonate any 
participant and eavesdrop on messages sent to any participant. 

 

 
(c) Public-Key Authority 

Stronger security for public-key distribution can be achieved by providing tighter control over 
the distribution of public keys from the directory. A typical scenario is illustrated in Figure 2.34. 

 

As before, the scenario assumes that a central authority maintains a dynamic directory of 
public keys of all participants. In addition, each participant reliably knows a public key for the 
authority, with only the authority knowing the corresponding private key. The following steps 
(matched by number to Figure 2.34) occur: 

 

 
Figure .PubIic-Key Distribution Scenario 
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1. A sends a time stamped message to the public-key authority containing a request for the 
current public key of B. 

 
2. The authority responds with a message that is encrypted using the authority‘s private key, 
PRauthT hus, A is able to decrypt the message using the authority's public key. Therefore, A is 
assured that the message originated with the authority. The message includes the following: 

 

• B‘s public key, PL/,which A can use to encrypt messages destined for B 

• The original request, to enable A to match this response with the corresponding earlier 
request and to verify that the original request was not altered before reception by the 
authority 

• The original timestamp, so A can determine that this is not an old message from the 
authority containing a key other than B‘s current public key 

3. A stores B's public key and also uses it to encrypt a message to B containing an identifier 
of A (IDA) and a nonce (/\/1), which is used to identify this transaction uniquely. 

 

4,5 B retrieves A‘s public key from the authority in the same manner as A retrieved B‘s 
public key. 

 

6.B sends a message to A encrypted with K aand containing A‘s nonce (/V1) as well as a 

new nonce generated by B (/V2) Because only B could have decrypted message (3), the 

presence of /V1 in message (6) assures A that the correspondent is B. 

7. A returns 2. encrypted using B‘s public key, to assure B that its correspondent is A. 
 

Thus, a total of seven messages are required. However, the initial four messages need 
be used only infrequently because both A and B can save the other‘s public key for future use, 
a technique known as caching. 

 

Disadvantages: 

• Bottle neck at the authority. 
 

(d) Public-Key Certificates 
 

The scenario of Figure 2.35 is attractive, yet it has some drawbacks. The public-key 
authority could be somewhat of a bottleneck in the system, for a user must appeal to the 
authority for a public key for every other user that it wishes to contact. As before, the directory 
of names and public keys maintained by the authority is vulnerable to tampering. 

An alternative approach is to use certificates that can be used by participants to 
exchange keys without contacting a public-key authority. 

A certificate consists of a public key plus an identifier of the key owner, with the whole 
block signed by a trusted third party. 

A user can present his or her public key to the authority in a secure manner, and obtain a 
certificate. The user can then publish the certificate. Anyone needed this user's public key can 
obtain the certificate and verify that it is valid by way of the attached trusted signature. 

 

1. Any participant can read a certificate to determine the name and public key of the 
certificate‘s owner. 



 

 

 
 

2. Any participant can verify that the certificate originated from the certificate authority and is not 
counterfeit. 
3. Only the certificate authority can create and update certificates. 

These requirements are satisfied by the original proposal in. Denning added the following 
additional requirement: 
4. Any participant can verify the currency of the certificate. 

A certificate scheme is illustrated in Figure. Each participant applies to the certificate 
authority, supplying a public key and requesting a certificate. 

 
 
 
 

 

 
 

 
Public-Key distribution of Secret Keys using public key cryptography: 

 
 Use previous methods to obtain public-key 

 Can use for secrecy or authentication 

 Public-key algorithms are slow so usually want to use private-key encryption to protect 
message contents, Hence need a session key 

 
a) Simple 
b) Secret key distribution with confidentiality and authentication 

c) Hybrid 
d) Diffie Hell man key exchange 

 
(a) SimpIe Secret Key Distribution: 

 
1. A generates a public/private key pair (KUa,KRa) and transmits a message to B consisting of 

KUa and an identifier of A,IDA. 

2. B generatesa secret key , and transmits it to A, encrypted with A‘s public key. 
3. A computes DKRa [EKUa [ s]] to recover the secret key. Because only A can decrypt the 
message, only A and B will know the identity of Ks - 

4. A discards KUaand KRa and B discards KUa• 

 

Advantages: 
 

• No keys exist before the start of the communication no key exist after the completion of 
communication 

• Secure from eaves dropping 



 

 

Disadvatages: 
 

• Replay attack 

• Meet in the middle attack 

• A generates a public/private key pair {PUa, PRaj and transmits a message intended for 
B consisting of PL/aand an identifier of A, IDA. 

• D intercepts the message, creates its own public/private key pair \PUd, PRO and 
transmits PUs 0 0 IDA to B. 

• B generates a secret key, Ks, and transmits E(PL/s, Ks). 

• D intercepts the message and learns Ks by computing D(PRd, E(PL/d, Ks)). 

• D transmits E(PL/a, Ks) to A. 

(b) Secret Key Distribution with Confidentiality and Authentication: 

 
1. A uses B‘s public key to encrypt a message to B containing an identifier of A (ID A) and 

a nonce (N1),which is used to identify this transaction uniquely. 

2. B sends a message to A encrypted with KUa and containing A‘s decrypted message 

(1) ,the presence of N1 in message (2) assures A that correspondent is B. 

3. A returns Ne. encrypted using B‘s public key, to assurer B that its correspondent is A. 

 
 

4. A select a secret key s find sends M = EKUb[EKRa[Ks]] TO B. Encryption of this message 

with B‘s public key ensures that only B can read it.;encryption with A‘s private key ensures 

that only A could have sent it. 

5. Computes DxUa[DKRb[M]]to recover thesecret key. 
 

Figure . Public Key Distribution of secret Keys 
Advantages: 

 

Scheme ensures both confidentiality and authentication in the exchange of a secret key. 

 

 
(c) A Hybrid Scheme 

Public-key scheme isused to distribute the master keys. The following rationale is provided 
for using thisthree-level approach: 

1. Performance: 

The public key encryption is used occasionally to update the master key between uses 
and KDC 

When the distribution of session keys is done by public key encryption the performance 
degrades because of high computation needed by P.K.E. 



 

 

2. Backward compatibility: The hybrid scheme is easily overlaid on an existingKDC 
scheme with minimal disruption or software changes. 

The addition of a public-key layer provides a secure, efficient means of distributingmaster keys. 

DIFFIE HELLMAN KEY EXCHANGE 

The purpose of the algorithm is to enable two users to exchange a key securely that can 
then be used for subsequent encryption of messages. The Diffie-Hellman algorithm depends for 
its effectiveness on the difficulty of computing discrete logarithms. 

 
First, we define a primitive root of a prime number p as one whose power generate all the 

integers from 1 to (p-1) i.e., if ‗a‘ is a primitive root of a prime number p, then the numbers 
a mod p, a

2 
mod p, ... ap 

1 
mod p 

- 
 

are distinct and consists of integers from 1 to (p-1) in some permutation. 

 
For any integer ‗b‘ and a primitive root ‗a‘ of a prime number ‗p‘, we can find a unique 

exponent ‗i‘ such that 

b - a' mod p where 0 i 1 (p-1) 

 
The exponent ‗i‘ is referred to as discrete logarithm. 

 

The Alqorithm  

 
Figure 2.37 summarizes the Diffie-Hellman key exchange algorithm.There are publicly 

known numbers: a prime number ‗q‘ and an integer a that is primitive root of q. suppose users A  
and B wish to exchange a key. User A selects a random integer XA‹ q and computes YA = a XA 
mod q. 
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Fig.Diffie Hellman Key Exchange 
Similarly, user B independently selects a random integer XB< q and computes YB a XB mod 

q. Each side keeps the X value private and makes the Y value available publicly to the other side. 



 

 

User A computes the key as 
 

 

User B computes the key as 

 
K = (YB) mod q and 

K = (YA)
XB 

mod q 
 

These two calculations produce identical results. 
K= (YB) mod q 

XB 
= (a mod q) mod q 

XB 
= (a 

— (a ) 

)mod q 
XB 

mod q 

XB 

= (a mod q) 

XB 
mod q 

= (Y A) mod q 

 
 

Global Public Elements 

prime number 
a<q and a is the primitive root of q 

User A Key generation 
Select XA Xy< q 
Calculate public Yr YA mod q 

User B Key generation 
Select XB XB‹ q 
Calculate public YB YB= 

XB 
mod q 

Generation of secret key by User A 
K = (YB) mod q 

Generation of secret key by User B 
K = (YA)

XB 
mod q 

 

The result is that two sides have exchanged a secret key. The security of the algorithm 
lies in the fact that, while it is relatively easy to calculate exponentials modulo a prime, it is very 
difficult to calculate discrete logarithms. 

Key Exchanqe Protocols 

 

 

Figure .Diffe-Hellman Key Exchange 
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mod 353 = 40 * 

 
 

The protocol depicted in figure 2.38 is insecure against a man-in-the-middle attack. Suppose Alice 
and Bob wish to exchange keys, and Darth is the adversary. The attack proceeds as follows: 

 

1. Darth prepares for the attack by generating two random private keys XD1 and XD2 and then 
computing the corresponding public keys YD1 and 
Yo2-2. Alice transmits YA to Bob. 
3. Darth intercepts YA and transmits YD1 to Bob. Darth also calculates = (YA) 

X
D mod q. 

X 
4. Bob receives YD1 and calculates K1 = (YD1) B mod q. 
5. Bob transmits XA to Alice. 

6. Darth intercepts XA and transmits YD2 to Alice. Darth calculates 1 " (YB) 
X

D1 mod q. 

7. Alice receives Yo2 and calculates 2' (YD2) 
X 

mod q. 

At this point, Bob and Alice think that they share a secret key, but instead Bob and Darth share 
secret key K1 and Alice and Darth share secret key All future communication between Bob and 
Alice is compromised in the following way: 

 
1. Alice sends an encrypted message M: E( 2. M). 
2. Darth intercepts the encrypted message and decrypts it, to recover M. 
3. Darth sends Bob E(K1. M) or E(K1. M‘), where M‘ is any message 

Example: 

Key exchange is based on the use of the prime number q —— 353 and a primitive root of 353, in 
this case a = 3. A and B select secret keys EA—— 97 and XB—— 233, respectively. 

Each computes its public key: 
7 

A computes YA 3 mod 353 = 40. 

B computes YB—— 3
233 

mod 353 = 248. 

After they exchange public keys, each can compute the common secret key: 
A computes K —— (Yy) mod 353 = 248 mod 353 = 160. 

B computes K —— (Y A)
XB 2 3 

mod 353 = 160. 

ELLIPTIC CURVE ARITHMETIC 

Elliptic Curves: 
An elliptic Curve is a Cubic equation of the form 

2 3 
Y +axy+by = x 

2 
+cx +dx +e 

 

Where a,b,c,d and e are real numbers 
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/' + g =/t = (3.89, -5.62). 
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A special addition operation is defined over elliptic curves and with the inclusion of a point 
―0" called point at infinity. 

 
If three points are on a line intersecting an elliptic curve, then their sum is equal to this 

point at infinity O (which acts as the identity element for this addition operation) 

 
Elliptic Curves over Galois field: 

3
An elliptic group over the Galois Field Ed(a,b) is obtained by computing x  +ax+b mod p 

for 0ñ xñ p. The constants a&b are non-negative integers smaller than the prime number p must 
satisfy the condition. 

3 2 
4a + 27b mod p 1 0 

 

For each value of x, one needs to determine whether or not it is a quadratic 
residue. If not then the point is not in the elliptic group Ed (a,b) 

 
Addition and multiplication operation over elliptic groups: 

 
Let the points P = (x1. y1) and Q = (X ,Y2) be in the elliptic group Ed (a,b) and O be the point at 

infinity. 

 
The rules for addition over the elliptic group Ed (a,b) are: 
1. P+O=O+P=P 

 
2. If x2 = x1 and y2 = -y1, that is P = (x1,y1) and Q = (X2,Y2)' (x1.-y1)' -P Then P+Q = O 

 
3. If Q I -P ,then their sum P+Q =(x3.y3) is given by 

 

 

 

and 
y2 —+   j p, ,;; 

3x + a 
 

 

Elliptic Curve Encryption: 

 
Elliptic curve cryptography can be used to encrypt the plain text message M, into 

ciphertext. The plain text message M is encoded into a point PM from the finite set of points in the 
elliptic group, Ed(a,b). 

 
The first step consists in choosing a generator point, G c Ed(a, b) , such that the smallest value 
of n for which nG = o is a very large prime number. 

 
The elliptic group Ed(a,b) and the generator point G are made public. 



 

 

 
 
 

Each user select a private key,nA< n and compute the public key PA as PA = nAG 

 
To encrypt the message point PM for Bob (B), 

Alice (A) choses a random integer k and compute the ciphertext pair of points c 

Using Bob‘s public key PB 

Pc'   [(KG),(PM B)] 
 

After receiving the ciphertext pair of points, Pc. Bob multiplies the firstpoint,(KG) with his private 

key nB and then adds the result to the second point in the ciphertext pair of points (PM + KPB) 

(PM + B) — [nB(KG)]= (PM+KnBG)-[nB(KG)]=PM 
 

which is the plaintext point, corresponding to the plaintext message M. 
 

Only Bob knowing the private key nB. can remove nB(KG) from the second point of the ciphertext 

pair of point, i.e (PM + KGB), and hence retrieve the plaintext information PM 

Elliptic curve cryptography 

 

Security of ECC: 

 
1. The cryptographic strength of elliptic curve encryption lies in the difficulty for a crypt analyst 
to determine the secret random number k from KP & P itself. 

 
2. The fastest method to solve this problem (known as elliptic curve logarithm problem is the 
pollard factorization method). 

 
3. The computational complexity for breaking the elliptic curve cryptosystem, using the pollard 

method is 3.3 x 10
10 

MIPS years for an elliptic curve key size of only 150bits. 

4. For comparison the fastest method to break RSA, using General Number Field Sieve method 

to factor the composite integer n in to the two prime p & q requires 2x10 
11 

MIPS years for a 768 bit 

RSA key & 3x 10
11 

MIPS years for a RSA key length 1024 
5. If the RSA key length is increased to 2048 bits, the GNES method will need 3x10 

20 
MIPS 

years to factor n whereas increasing the elliptic curve key length to only 24 bits will impose a 
2 

computational complexity of 1.6x10 MIPS years. 
 

Analog of Diffie-Hellman Key Exchange: 
 

Key exchange using elliptic curves can be done in the following manner. 

First pick a large integer q, which is either a prime number p or an integer of the form 
2‖ and elliptic curve parameters a and b. This defines the elliptic group of points Ed(a, b). 

Next, pick a base point G = (x1. y1) in Ed(a, b) whose order is a very large value n. The 
order n of a point G on an elliptic curve is the smallest positive integer n such that nG = O. Eq(a, 
b) and G are parameters of the cryptosystem known to all participants. 

1. A selects an integer nA less than n. This is A's private key. A then generates a public key PA 

nA x G; the public key is a point in Ed(a, b)• 

2. B similarly selects a private key nB and computes a public key PB 



 

 

 
 

3. A generates the secret key K = nAx PB B generates the secret key K = nB x EA. 

 
 Global Public elements 

Ed(a,b) Elliptic curve with parameters a,b and q, where q is a prime or 

an integer of the form 2‖ 

 
 point on elliptic curve whose order is large value n 

 User A Key Generation 

Select private n A nA<n 

Calculate public PA PA nA X G 

 User B Key Generation 

Select private nB nB‹n 

Calculate public PA PB = n B X G 

 Calculation of secret key by User A 

K = nAX PB  

 Calculation of secret key by User B 

K = nBX PA  

Figure .ECC Diffie-Hellman Key Exchange 

 


	Prime factorisation
	Fermat Theorem or Fermat’s little theorem
	If a belongs to integer , P is a prime number that does not divide a

	In special case
	It is mainly used to solve modular exponentiation. Eg. Compute the value of 2 10 mod 11
	Eg. Compute the value of 2 340 mod 11
	)=(2
	)

	//Proof.
	Take division algorithm
	let g.c.d (a,p ) ie coprime
	fact says that if a leaves remainder r where 1<= r<= p-1 on dividing by p then ka,1<= k<= p-1 also leaves remainders from 1 to p-1.
	If a,2a,3a,…(p-1)a surely gives remainders 1,2,3,…(p-1)
	a p-1 ≡ 1 (mod p) [as mod p cannot divide (p-1)!]
	= 1 [as per theorem]
	=(52 mod 13) * (5 13 mod 13)
	=(12 * 5) mod 13

	Euler’s theorem
	If n and a are coprime positive intergers then a phi(n) ≡1 (mod )n
	n is prime number and phi(n) is Euler‘s phi function.

	Euler’s phi function or Euler’s totient function(
	Euler‘s phi function phi (n) returns the numbers of integers from 1 to n,that are relatively prime to n.
	1.If n is a prime number then phi (n) = n-1 2.If n is a composite number then
	2.2.Find prime powers (p n)of the given number n. For computing the phi value of
	Eg. Compute Eulers‘s totient function for the values 3,8 1. phi(3)=3-1=2
	2 ( since p – p

	Primality Testing Methods
	1. Naive Algorithm:
	Naïve Algorithm is used to divide the given input number P by all the integers starting from 2 to root of P – 1

	Algorithm:
	1. Pick any integer P that is greater than 2
	3. If P is divisible by any one of these integer, we can conclude that P is a composite
	Example:
	2. 2,3,4,5,6,7,8,9

	2. Fermat’s Primality Test:
	Example:
	Check whether the given number 12 is prime number or not using Fermat‘s theorem
	To check whether 12 is prime number or not, we have to check aP-1 ≡ 1(mod P)
	Where 1 <= a < 12
	If it is equal to 1, then it is called prime number. Otherwise, it is called composite number.
	(i.e) 5 11 mod 12=5

	3. Miller – Rabin Primality Test
	Function Miller-Rabin (x)
	x-1 = (2 )y //x is the input number for primality test
	select a randomly in the range [2, (x-1)]
	Z = a mod x
	{
	Z = Z mod x
	return composite
	Find the primality for 7 x = 7
	As per algorithm, x – 1 = 7 – 1 = 6 = 2 x 3
	Z = a mod 7
	Z = 2 mod 7 = 1
	States that when the moduli of a system of linear congruencies are pairwise prime, there is a unique solution of the system modulo, the product of the moduli.
	Chinese mathematician Sun Tsu Suan-Ching asking the following problem:
	(Otherwise) Mangos are divided into groups consisting of 3 mangos in each group remaining is 2. If the mangos are divided into groups consisting of 5 mangos in each group remaining 3.
	Let M1, M2, …, Mn be (pairwise) relatively prime numbers. Then the system: Step1: Calculate M

	
	x ≡ 2 mod(3)
	ii. For each equation calculate
	theorem or easy inverse method like 35 x ? mod 3=1 (ie) 2]
	= (140 + 63 + 30) mod 105
	
	 (1)
	 (2)
	Step 1: Split x and y into smaller parts using exponential rules as shown below: 290 mod 13 = 250 x 240
	240 mod 13 = 1099511627776 mod 13 = 3
	2 mod 13 = (2 x 2 ) mod 13
	Logarithms or Indices
	• Discrete logarithms are logarithms defined with regard to multiplicative cyclic groups. If G is a multiplicative cyclic group and g is a generator of G, then from the definition of cyclic groups, we know every element h in G can be written as
	g for some x. The discrete logarithm to the base g of h in the group G is defined
	• For example, if the group is Z5*, and the generator is 2, then the
	discrete logarithm of 1 is 4 because 2 ≡ 1 mod 5.
	• Goal: Find k such that ak
	= b( mod p). (In other words, find the position of y in
	the large list of {a, a , . . . , a }.
	• For example L14(5) = 10 mod 19, because 1410 = 5( mod 19).
	that is to find x where a = b mod p
	• if a is a primitive root then always exists
	c = M
	mod n
	Fig . Example of RSA Algorithm
	Figure. Uncontrolled Public-Key Distribution





