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2.1 ALGEBRAIC STRUCTURES

Common
algebraic structures
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Groups Rings Fields

Figure 2.1 Common Algebraic Structures

2.1.1 Groups, Rings, Fields
Groups, rings, and fields are the fundamental elements of a branch of mathematics
known as abstract algebra, or modern algebra.

Groups

A group G, sometimes denoted by {G,*} ,is a set of elements with a binary operation
denoted by * that associates to each ordered pair (a,b) of elements G in an element(a*b) in
, such that the following axioms are obeyed:

(Al) Closure: If a and b belong to G, then a*b is
also in G. (A2) Associative: a*(b*c)=(a*b)*c forall a, b, ,in G.
(A3) Identity element: There is an element ein G such
that a*e=e*a=a for all in G .
(A4) Inverse element: For each a in G, there is an element

a’in G such that a*a’=a’*a=e .
If a group has a finite number of elements, it is referred to as a finite group, and the
order of the group is equal to the number of elements in the group. Otherwise, the group is
an infinite group.
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A group is said to be abelian if it satisfies the following additional condition:
(A5) Commutative: a*b = b*afor all a b, in G.

CYCLIC GROUP: A group is cyclic if every element of G is a power a* (k is an
integer) of a fixed element a£ G .The element is a said to generate the group G or to be a
generator of
G.A cyclic group is always abelian and may be finite or infinite.
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Rings

A ring R, sometimes denoted by {R, +, X}, is a set of elements with two binary
operations, called addition and multiplication, such that for all a, b, ¢ ,in R the following
axioms are obeyed

(A1-AS5) R is an abelian group with respect to addition; that is, & satisfies
axioms Al through AS. For the case of an additive group. we denote
the identity element as (0 and the inverse of a as —a.

(ML) Closore nnder multiplication: If & and b belong to K, then ab is also
in R.

(M2 Associativity of multiplication: a(bc) = (ab)c for alla, b, cin R.

(M3 Dyistributive laws: a(bh + )y = ab + ac forall a, b, cin K.
(a + by = ac + boforall a, b, cin /K.

Aring is said to be commutative if it satisfies the following additional condition:

(M4) Commutativity of multiplication: ab = bafor all a, b in K.

Next, we define an integral domain, which is a commutative ring that obeys the following
axioms

(MS) Mulitiplicative identity: There is an element 1 in R such
thatal = la = aforall ain K.

{M6) No zero divisors: If a, b in & and ab = 0, then either a = 0
or b = 1.

Fields

A field F, sometimes denoted by {F, +, X}, is a set of elements with two binary
operations, called addition and subtraction, such that for all a, b, ¢, in F the following
axioms are obeyed

(A1-M6) Fis an integral domain: that is, I satisfies axioms Al through A5 and
M1 through Mé.

(MT) Multiplicative inverse: For each a in I, except (), there is an element
a 'in Fsuch thataa ' = (a Ya = 1.

19CS503/CNS/M.SUGUNA AP/CSE/SNSCE




( [ [ (A1) Closure under addition; [f aand b belong to S, then a + b is also in §

oy o | (A2 Associtity of adion: a+(b+0=(a+h+chorallabcins
o En § (A3) Additive identity: There is an element 0 in R such that
£ c G at+0=0+a=alorallam$
e % (M) Additve nverse: For cach a i § there s an clement ~a n §
- '§< ._< o such thata + (-a) = (-a) +a =0
g5\ M) < (AS) Commutativty of ddion: atb=b+aforallabins
% g (M1) Closure under multiplication: If a and b belong to S, then ab is also n §
2/ 3 § (M) Assocvtyof muiplcaion: b = bl forall by cin§
[ i (M3) Distributive Jaws: alb+¢)=ab+acfloralla,h,em$
:5' \ (@+ b = ac + be forall a, b, cm §
k (M4) Commutativity of multphcation: ab = ba forall a,bm §
(M5) Muluplicative identity: There is an clement | n § such that
al = la=aforallain§
(M6) No zero divisors: [fa, b Sandab = (), then cither
a=Norh=10
L (M7) Multiplicative imverse: I abelongs to Sand a (), there is an
clementa "in § such thataa ' =4 'a=1

Figure 2.2 Groups, Ring and Field

2.2 MODULAR ARITHMETIC
If is an integer and n is a positive integer, we define a mod n to be the remainder
when a is divided by n. The integer n is called the modulus. Thus, for any integer a, we can
rewrite Equation as follows

a=qn+r D=r<nq=|an|

a=|an| xn+ (amodn)

1IMmod7 = 4; IMMmod7 =3

Two integers a and b are said to be congruent modolo a, if (a mod n) =
(b mod n). This is written as a = b (modn).?

73 = 4 (mod 23): 21 = -9 (mod 10)

Note that if a = 0 (mod n). then n|a.
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Modular Arithmetic Operations

A kind of integer arithmetic that reduces all numbers to one of a fixed set [0,....,n-1] for some
number n. Any integer outside this range is reduced to one in this range by taking the
remainder after division by n.

Modular arithmetic exhibits the following properties

L [{a mod n) + (bmodn) moda = (@ + b) mod
2. [(@amod n) — (bmoda) modn = (a — b) mod n
A [{a mod sy > (bmod n)] mod s = (g > b) mod #

We demonstrate the first property. Define (@ mod n) = rpand (b mod 1) = .
Then we can write a = r, + jn for some integer j and b = r, + kn for some integer
k. Then

fa@+ bymodn = (r, + jon + ry + kn)modn
= (ry + ry + {k + jyn) mod n
= (ry + rpymod n
= [{a mod 1) + (b mod a)|mod a

The remaining properties are proven as easily. Here are examples of the three

properties:
Table 2.1 Arithmetic Modulo 8

1Tmod8 = 3;15mod8 =7
[(11 mod 8) + (15mod 8)| mod 8 = 10mod 8 = 2
(11 + 15)mod 8 = 26 mod 8 = 2
[(11mod8) — (15mod8)|mod 8 = —4mod 8 = 4
(11 — 15)mod 8 = —4mod 8 = 4
[(11 mod 8) % (15mod 8)| mod 8 = 21 mod 8 = 5
(11 x 15)mod 8 = 165mod 8 = 5

+ ] 1 2 3 q 5 6 7

i 0 1 2 3 4 5 6 7

1 1 2 i 4 5 t T ]

2z 2 3 4 5 & T 0 1

3 k] 4 5 fa 7 0 1 2

4 4 5 t 7 0 1 2 3

5 3 f T ] 1 2 3 4

[ f T ] 1 2 3 4 5

7 T 1] 1 2 3 4 5 f

{a) Adidition modulo 8

x 0 1 2 3 4 5 & 7 w_w ow!
i} ] I I ] ] I 1] ] 0 o —
1 0 1 2 3 4 5 3 7 1 7 1
2 i 2 4 6 i 2 4 6 2 & —
3 0 3 6 1 4 7 2 5 3 3 3
4 1] 4 i 4 1] 4 ] 4 4 4
5 0 5 2 7 4 1 0 3 5 3 5
[ 0 6 4 2 0 6 4 2 3 2 | —
7 i} 7 6 5 4 3 2 1 7 1 T
{b) Multiplication modulo 8 (e} Additive and multiplicative

inverses modulo B




2.3 EUCLID’ S ALGORITHM
One of the basic techniques of number theory is the Euclidean algorithm, which is
a simple procedure for determining the greatest common divisor of two positive integers.
First, we need a simple definition: Two integers are relatively prime if their only common
positive integer factor is 1.

Greatest Common Divisor
Recall that nonzero b is defined to be a divisor ofa if a =mb for some m, where a,b,
and m are integers. We will use the notation gcd(a , b) to mean the greatest common divisor
of a and b .The greatest common divisor of a and b is the largest integer that divides both
aandb
.We also define gcd(0,0) = 0.
Algorithm
The Euclid's algorithm (or Euclidean Algorithm) is a method for efficiently
finding the greatest common divisor (GCD) of two numbers. The GCD of two integers
X and Y is the largest number that divides both of X and Y (without leaving a remainder).
For every non-negative integer, a and any positive integer b
gcd (a, b) = ged (b, a mod b)
Algorithm Euclids (a, b)
a=a
B=b
while (B > 0)
Rem = o mod B
a=p
B =Rem
returno
Steps for Another Method
a=qlb+r1;0<r1<b

b=9g2r1 +r2;0<r2<rl
r=q3r2+r3;0<r3<r2

rn-2 = gnr-1 + rn; 0<rm<rm-1

m-1=glm+0
d=gcd(a,b)=m
Example 1:
gcd (55, 22) = gcd (22, 55 mod 22)
=gcd (22, 11)
=gcd (11, 22 mod 11)
=gcd (11, 0)

gcd (55, 22) is 11
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Example 2:
gcd (30, 50) = gcd (50, 30 mod 50)
=gcd (50, 30)
= gcd (30, 50 mod 30)
=gcd (30, 20)
= gcd (20, 30 mod 20)
= gcd (20, 10)
=gcd (10, 20 mod 10)
=gcd (10, 0)
gcd (30, 50) is 10
Another Method
To find gecd (30,50)

50 =1x30 + 20 ged (30, 20)
30 =1x20+ 10 ged (20,10)
20 =1x10+10 ged (10,10)
10 =1x10+0 ged (10,0)

Therefore, ged (30,50) = 10

Example 3:

gcd (1970, 1066) = gecd (1066, 1970 mod 1066)
=gcd (1066, 904)
=gcd (904, 1066 mod 904)
=gcd (904, 162)
=gcd (162, 904 mod 162)
=gcd (162, 94)
=gcd (94, 162 mod 94)
=gcd (94, 68)
=gcd (68, 94 mod 68)
=gcd (68, 26)
=gcd (26, 68 mod 26)
=gcd (26, 16)
=gcd (16, 26 mod 16)
=gcd (16, 10)
=gcd (10, 16 mod 10)
=gcd (10, 6)
=gcd (6, 10 mod 6)
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=gcd (6, 4)
=gcd (4, 6 mod 4)
=gcd (4, 2)
=gcd (2, 4 mod 2)
=gcd (2, 0)

gcd (1970, 1066) is 2
Another Method
To find ged (1970, 1066)

1970 =1x 1066 + 904
1066 =1x904 + 162
904 =5x162 + 94
162 =1x94 +68
94 =1x68 +26
68 =2x26+16
26 =1x16+10
16 =1x10+6
10 =1x6+4

6 =1x4+2

4 =2x2+0

Therefore, ged (1970, 1066) = 2
Extended Euclidean Algorithm

gcd (1066, 904)
gcd (904,162)
gced (162, 94)
gcd (94, 68)
gcd (68, 26)
gcd (26, 16)
gcd (16, 10)
gced (10, 6)
gcd (6, 4)

gcd (4, 2)

gcd (2, 0)

Extended Euclidean Algorithm is an efficient method of finding modular inverse of

an integer.

Euclid’s algorithm can be improved to give not just gcd (a, b), but also used to find
the multiplicative inverse of a number with the modular value.

Example 1

Find the Multiplicative inverse of 17 mod 43
17-1 mod 43

17* X =mod 43

X=17-1 mod 43
43=17*2+9
17=9*1+8

9=8*1+1

Rewrite the above equation
9+8(-1)=1-> (1)

1749(-1) =8 > (2)
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43+17(-2) =9 > (3)
Substitution
subequ 2inequ 1
(1)> 9+8(-1) = 1 [Sub 17+9(-1) = 8]
9+(17+9(-1))(-1) =1
9+17(-1)+9(1)=1
17(-1)+9(2) =1 > (4)
Now sub equ (3) in equ (4)
43+17(-2) =9 > (3)
17(-1)+(43+17(-2))(2)=1
17(-1)+43(2)+17(-4)=1
17(-5)+43(2) = 1>(5)
Here -5 is the multiplicative inverse of 17. But inverse cannot be negative
17-1 mod 43 = -5 mod 43 = 38
So, 38 is the multiplicative inverse of 17.
Checking, 17* X = 1 mod 43
17 * 38 =1 mod 43
646 = 1 mod 43 (15*43 = 645)
Example 2
Find the Multiplicative inverse of 1635 mod 26
1635-1 mod 26
1635 =26 (62) + 23
26=23(1)+3
23=3(7)+2
3=2(1)+1
Rewriting the above equation
3+2(-1)=1-> (1)
23+3(-7) =2 > (2)
26+23(-1) =3 > (3)
1635+26(-62) = 23 > (4)
Substitution
sub equ (2) in equ (1)
(2) =>23+3(-7) =2
3+2(-1) =1
3+(23+3(-7))(-1) =1
3+23(-1)+3(7)=1
3(8)+23(-1) =1 > (5)
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sub equ (3) in equ (5)
26+23(-1)=3 > (3)
(26+23(-1))(8) + 23 (-1) =1
26(8) + 23 (-8) + 23 (-1) =1
26 (8) + 23 (-9) =1 > (6)
Sub equ (4) in equ (6)
1635+26(-62) = 23 > (4)
26 (8) + (1635 + 26 (-62) ) (-9) =1
26 (8) + 1635 (-9) + 26 (558) =1
1635 (-9) + 26 (566) =1 > (7)
From equ (7) -9 is inverse of 1635, but negative cannot be inverse.
1635-1 mod 26 = -9 mod 26 = 17
So, the inverse of 1635 is 17.
Checking, 1635* X = 1 mod 26

1635 * 17 = 1 mod 26

27795 = 1 mod 26 (1069*26 = 27794)

2.4 CONGRUENCE AND MATRICES

Properties of Congruences

Congruences have the following properties:

a = b (mod n)if nl(a — b).

a = b (mod n) implies b = a (mod n).

a = b(mod n) and b = ¢ (mod n) imply a = ¢ (mod n).

To demonstrate the first point, if nl(a — b), then (@ — b) = kn for some k.

So we can write @ = b + kn. Therefore, (a mod n) = (remainder when b + kn is
divided by n) = (remainder when b is divided by n) = (b mod n).

23 = B (mod 3) because 23 -8B =15=53x3
—11 = 5(mod 8) because —11 —5= —16 =8 % (-2)
8l = 0(mod27) because Bl —0=81 =27 x3

The remaining points are as easily proved.

Matrices

Matrix is a rectangular array in mathematics, arranged in rows and columns

of numbers, symbols or expressions.

A matrix will be represented with their dimensions as | x m where | defines the row

and m defines the columns
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m columns

a1 4ap A1m
‘§ 41 4axp A2
(@)
et
—
an  ap Ay
Examples of Matrices
1. Row Matrix
2. Column Matrix
3. Square Matrix
4. Zero Matrixes
5. Identity Matrix
[215“} 2 23 14 56 0 0 1 0
. 0O 0
Row matrix 4 221 18 0 0 0 1
L2110 g 31 X
Column ‘ . 0
matrix Sqlla.u
matrix

2.5 FINITE FIELDS
FINITE FIELDS OF THE FORM GF(p)
The finite field of order is generally written ; GF stands for Galois field,in honor of
the mathematician who first studied finite fields
Finite Fields of Order p
For a given prime, , we define the finite field of order , , as the set of integers
together with the arithmetic operations modulo .

The simplest finite field is GF(2). Its arithmetic operations are easily summarized:

+10 1 X0 1 w| —w wl
010 1 OO0 0 0 0 —
18| ) 110 1 1 1 1

Addition Multiplication Inverses

In this case, addition is equivalent to the exclusive-OR (XOR) operation, and
multiplication is equivalent to the logical AND operation.

Finding the Multiplicative Inverse in It is easy to find the multiplicative inverse of an
element in for small values of .You simply construct a multiplication table, such as shown in
Table 2.2b,and the desired result can be read directly. However, for large values of ,this
approach is not practical. p p GF(p) GF(p)
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Table 2.2 Arithmetic in GF(7)

- 0 1 2 3 4 5 ]

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 ]

2 2 3 4 5 B 0 1

3 3 4 5 6 0 1 2

4 A 5 6 0 1 2 3

5 5 ) 0 1 2 3 4

) 6 0 1 2 3 4 5

{a) Addition modulo 7
W —wW ]

® 0 1 2 3 4 5 B ] 0 -

0 0 0 0 0 0 0 0 1 6 1

1 0 1 2 3 4 5 6 2 3 4

2 0 2 4 6 1 3 5 3 4 5

3 0 3 6 2 5 1 4 4 3 2

4 0 4 1 5 2 6 3 5 2 3

5 0 5 3 1 (& 4 2 f 1 6

) 1] ) 5 4 3 2 1 . Lo

(c) Additive and multiplicative
(b} Multiplication modulo 7 inverses modulo 7

2.5.1 Polynomial Arithmetic

We are concerned with polynomials in a single variable and we can distinguish three
classes of polynomial arithmetic. « Ordinary polynomial arithmetic, using the basic rules of
algebra. < Polynomial arithmetic in which the arithmetic on the coefficients is performed
modulo
:that is,the coefficients are in .

Polynomial arithmetic in which the coefficients are in ,and the polynomials are
defined modulo a polynomial whose highest power is some integer .
Ordinary Polynomial Arithmetic
A polynomial of degree (integer) is an expression of the form

A polynomial of degree n (integer n = 0) 1s an expression of the form

n
f(x) =ax" + ap_ 1 X"V + -+ aix + ay = Za,-xi
i=0
where the g; are elements of some designated set of numbers §, called the
coefficient set, and a, # 0. We say that such polynomials are defined over the
coefficient set S.

A zero-degree polynomial is called a constant polynomial and i1s simply an
element of the set of coefficients. An nth-degree polynomial is said to be a monic
polynomial if a, = 1.

In the context of abstract algebra, we are usually not interested in evaluating a
polynomial for a particular value of x [e.g., f(7)]. To emphasize this point, the variable
x 1s sometimes referred to as the indeterminate.
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Addition and subtraction are performed by adding or subtracting corresponding

coefficients. Thus, if
m

n
fix) = Ea,-x’; g(x) = Ebixi; n=m
i—0

i=l)

then addition is defined as
m

fix) + g(x) = X (a; + b)x' + ﬁ: ax'

i=l) i=m+1

and multiplication is defined as
nt+m

f) X g(x) = D

i=0
where

Cp = (l(;bk + (l]bk 1 A REULESE | (Ik,,|b| T (lkb”

As an example, let flx) = x* + x> + 2and g(x) = x> — x + 1, where S is the set

of integers. Then
fx) +gx) = +22% —x+3
flx) —glx) =X +x+1
flx) X g(x) =2 +3x> —2x +2

Il

Polynomial Arithmetic with Coefficients in

Let us now consider polynomials in which the coefficients are elements of some
field F; we refer to this as a polynomial over the field F. In that case, it is easy to show that
the set of such polynomials is a ring, referred to as a polynomial ring. That is, if we consider
each distinct polynomial to be an element of the set, then that set is a ring 8 when
polynomial arithmetic is performed on polynomials over a field, then division is possible.
Note that this does not mean that exact division is possible. Let us clarify this distinction.
Within a field, given two elements and, the quotient is also an element of the field. However,

given a ring that is not a field, in Ra /b ba Zp
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4 x? + 2 4 x? + 2
+ (F2-x+1) - (P2-x+ 1)
a2l x + 3 P +x+1
{a) Addition {b) Subtraction
24 xl + 2 X+ 2
x (XX-x+1) .1‘2-.t'+]/.13-|-.r2 + 2
P + 2 2-tix
-xt- - x i x + 2
et an? 22-2r4+ 2
= +3x2-2c+ 2 x
(c) Multiplication {d) Division

Figure 2.3 Examples of Polynomial Arithmetic
A polynomial over a field is called irreducible if and only if cannot be expressed as
a product of two polynomials, both over, and both of degree lower than that of. By analogy
to integers, an irreducible polynomial is also called a prime polynomial.

2.6 SYMMETRIC KEY CIPHERS
Symmetric ciphers use the same cryptographic keys for both encryption of plaintext
and decryption of ciphertext. They are faster than asymmetric ciphers and allow encrypting
large sets of data. However, they require sophisticated mechanisms to securely distribute
the secret keys to both parties

Definition A symmetric cipher defined over (K, M, C], where:

=« K - a set of all possible keys,
= M - a set of all possible messages,
= C - a set of all possible ciphertexts
is a pair of efficient algorithms (E, D), where:
« E:K=M->C
« D KxC->M
such that for every m belonging to M, k belonging to K there is an equality:

« D(k, E(lk m)) =m (the consistency ruls)

= Function E is often randomized

=» Furiction D is always deterministic




are used in symmetric key cryptography
Symmetric encryption (figure 2.4) uses a single key that needs to be shared among
the people who need to receive the message while asymmetrical encryption usesa pair of
public key and a private key to encrypt and decrypt messages when communicating.

Secret key shared by Secret key shared by
sender and recipient sender and recipient
&
i K K
Transmitted
ciphertext
> E—
Y =E(K, X) X=D(K,Y)
Pli::lin‘tletxt Encryption algorithm Decryption algorithm P(l)zif t::t
P (c.g., AES) (reversc of encryption P

algorithm)
Figure 2.4 Simplified Model of Symmetric Encryption
2.7 SIMPLIFIED DATA ENCRYPTION STANDARD (S-DES)

The overall structure of the simplified DES shown in Figure 2.5. The S-DES
encryption algorithm takes an 8-bit block of plaintext (example: 10111101) and a 10-bit key
as input and produces an 8-bit block of ciphertext as output.

The S-DES decryption algorithm takes an 8-bit block of ciphertext and the same 10-

bit key used to produce that ciphertext as input and produces the original 8-bit block of
plaintext.




10-bit Key

ENCRYPTION DECRYPTION

8-bit plaintext 8-bit plaintext

S-bit ciphertext S-bit ciphertext
Figure 2.5 Overview of S-DES Algorithm
The encryption algorithm involves five functions:
¢ An initial permutation (IP)
e A complex function labeled fk, which involves both permutation and
substitution operations and depends on a key input.
¢ A simple permutation function that switches (SW) the two halves of the data.
e The function fk again.
A permutation function that is the inverse of the initial permutation
The function fk takes as input not only the data passing through the encryption
algorithm, but also an 8-bit key. Here a 10-bit key is used from which two 8-bit subkeys
are generated.
The key is first subjected to a permutation (P10). Then a shift operation is performed.
The output of the shift operation then passes through a permutation function that produces
an 8-bit output (P8) for the first subkey (K1).
The output of the shift operation also feeds into another shift and another instance
of P8 to produce the second subkey (K2).




The encryption algorithm can be expressed as a composition composition1 of
functions:

IP-1 0 fK2 0 SW o fk1 o IP, which can also be written as

Ciphertext = IP-1 (fK2 (SW (fk1 (IP (plaintext)))))

Where

K1 = P8 (Shift (P10 (Key)))

K2 = P8 (Shift (shift (P10 (Key))))

Decryption can be shown as Plaintext = IP-1 (fK1 (SW (fk2 (IP (ciphertext)))))

2.7.2 S-DES Key Generation
S-DES depends on the use of a 10-bit key shared between sender and receiver.
From this key, two 8-bit subkeys are produced for use in particular stages of the encryption
and decryption algorithm.(Figure 2.6)

10-bit kKey

i...

I\’l ‘ :‘1 ]

N
K, #—=
Figure 2.6 S-DES Key Generation

First, permute the key in the following fashion. Let the 10-bit key be designated as
(k1, K2, k3, k4, k5, k6, k7, k8, k9, k10). Then the permutation P10 is defined as:

P10 (k1, K2, k3, k4, k5, k6, k7, k8, k9, k10) = (k3, k5, K2, k7, k4, k10 10, k1, k9,
k8, k6).

P10 can be concisely defined by the display:

P10
3 5 2 7 -+ 10 1 9 8§ 6




This table is read from left to right; each position in the table gives the identity of the
input bit that produces the output bit in that position. So, the first output bit is bit 3 ofthe
input; the second output bit is bit 5 of the input, and so on.

Example
The 10 bit key is (1010000010), now find the permutation from P10 for this key so
it becomes (10000 01100).

Next, perform a circular left shift (LS-1), or rotation, separately on the first five bits
and the second five bits. In our example, the result is (00001 11000).

Next, apply P8, which picks out and permutes 8 of the 10 bits according to the
following rule:

P8
6 3 7 - 8 5 10 9

So, The result is subkey 1 (K1). In our example, this yield (10100100).

Then go back to the pair of 5-bit strings produced by the two LS-1 functions and
performs a circular left shift of 2 bit positions on each string. In our example, the value
(00001 11000) becomes (00100 00011).

Finally, P8 is applied again to produce K2. In our example, the result is (01000011).
2.7.3 S-DES Encryption
Encryption involves the sequential application of five functions (Figure 2.7).
1. |Initial Permutations
The input to the algorithm is an 8-bit block of plaintext, which we first permute using
the IP function

[P
2 6 3 1 - 8

N
~J]

The plaintext is 10111101
Permutated output is 01111110




Sobit plalmtext

\z

S-bit clphertexs

Figure 2.7 S-DES Encryption
2. The Function fi

The most complex component of S-DES is the function fk, which consists of a
combination of permutation and substitution functions. The functions can be expressed as
follows. Let L and R be the leftmost 4 bits and rightmost 4 bits of the 8-bit input to f K, and
let F be a mapping (not necessarily one to one) from 4-bit strings to 4-bit strings. Then we
let

Fk (L, R) = (L&F (R, SK), R)

Where SK is a sub key and @is the bit-by- bit exclusive OR function

Now, describe the mapping F. The input is a 4-bit number (n1 n2 n3 n4). The first
operation is an expansion/permutation operation:

E/P
4 1 2 3 2 3 4 1

Now, find the E/P from IP
IP=01111110, it becomes
E/P=01111101

Now, XOR with K1

=>01111101 10100100 = 11011001




The first 4 bits (first row of the preceding matrix) are fed into the S-box S0 to produce
a 2- bit output, and the remaining 4 bits (second row) are fed into S1 to produce another 2-

bit output.
These two boxes are defined as follows:
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The S-boxes operate as follows. The first and fourth input bits are treated as a 2- bit
number that specify a row of the S-box, and the second and third input bits specify a column
of the S-box. Each s box gets 4-bit input and produce 2 bits as output. It follows 00- 0, 01-
1, 10-2, 11-3 scheme.

Here, take first 4 bits, Second 4 bits
So=> 1101 S1=> 1001

11->3 11->3
10->2 => 3 =>11 00->0=>2=>1

So, we get 1110

> Now, find P4
P4
2 4 3 1

After P4, the value is 1011
Now, XOR operation 1011 0111 => 1100

3. The Switch function

» The switch function (sw) interchanges the left and right 4 bits.
1100 1110

1110 1100

4., Second function fx
» First, do E/P function and XOR with Kz, the value is 01101001 01000011, the answer is

00101010
> Now, find Sp and S
So => 00->0 Si=> 10->2
01->1 =>0F 00 01->1 =>0=F00
Value is 0000
» Now, find Psand XOR operation
After Py => 0000 & 1110 = 1110, then concatenate last 4 bits after interchange in sw.

> Now value is 11101100




5. Find 1P

[P -1

- 1 3

So, value is 01110101
The Ciphertext is 01110101
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2.8.3 S-DES Decryption
» Decryption involves the sequential application of five functions.
1. FindIP

e After IP, value is 11101100
2. Function fx

e After step 2, the answer is 11101100

3. Swift

e The answeris 11001110
4. Second fi

e The answeris 01111110
5. Find IP-1

e 101111101 -> Plaintext

2.8 DATA ENCRYPTION STANDARD

The most widely used encryption scheme is based on the Data Encryption Standard (DES)
adopted in 1977. The algorithm itself is referred to as the Data Encryption Algorithm (DEA).

For DES, data are encrypted in 64-bit blocks using a 56-bit key. The algorithm transforms
64-bit input in a series of steps into a 64-bit output.

2.8.1 DES Encryption

The overall scheme for DES encryption is illustrated in the Figure 2.8. There are two inputs
to the encryption function: the plaintext to be encrypted and the key. The plaintext must be 64
bits in length and the key is 56 bits in length.

2.8.2 General Depiction of DES Encryption Algorithm
Phase 1

Looking at the left-hand side of the figure 2.8, we can see that the processing of the
plaintext proceeds in three phases.

First, the 64-bit plaintext passes through an initial permutation (IP) that rearranges the bits
to produce the permuted input.

Phase 2:

This is followed by a phase consisting of 16 rounds of the same function, which involves
both permutation and substitution functions.

The output of the last (sixteenth) round consists of 64 bits that are a function of the input
plaintext and the key. The left and right halves of the output are swapped to produce the preoutput.




Phase 3:

Finally, the preoutput is passed through a permutation (IP") that is the inverse of the
initial permutation function, to produce the 64-bit ciphertext.
The right-hand portion of Figure shows the way in which the 56-bit key is used.

Operation on key:

Initially, the key is passed through a permutation function. Then, for each of the 16 rounds,
a subkey (Ki) is produced by the combination of a left circular shift and a permutation. The
permutation function is the same for each round, but a different subkey is producedbecause of
the repeated shifts of the key bits.

64-bit plaintext 64-bit key

Initial permutation
A 64

Y

Round 1

. 56
Y
K, 48 56 , :
Round 2 Permuted choice 2 Left circular shift

|
|
|
|
|
|
|
|
|
I
|
Y

¥

[ l Ks 48 [ l 56 [ ]
Round 16 16 #—{ Permuted choice 2 - Left circular shift
Y
l 32-bit swap '

64 bits
Y
Inverse initial
permutation
Joyrereerrety,
h'd

64-bit ciphertext

Figure 2.8 DES Encryption Algorithm
Initial Permutation

The input to a table consists of 64 bits numbered from 1 to 64. The 64 entries in the
permutation table contain a permutation of the numbers from 1 to 64. Each entry in the
permutation table indicates the position of a numbered input bit in the output, which alsoconsists
of 64 bits.




Permutation Tables for DES

(@) Initial Permutation (IP)

58
60
62
64
57
59
61
63

50
52
54
56
49
51
53
55

42
44
46
48
41
43
45
47

34
36
38
40
33
35
37
39

Inverse Initial Permutation (IP™)

40 8 48
39 7 47
38 6 46
37 5 45
36 4 44
35 3 43
34 2 42
33 1 41
Expansion Permutation (E)
32 1 2
4 5 6
8 9 10
12 13 14
16 17 18
20 21 22
24 25 26
28 29 30

Permutation Function (P)

16
1

2

19

Consider the following 64-bit input M:

M1

M9

M17
M25
M33
M41
M49
M57

7
15
8
13

M2

M10
M18
M26
M34
M42
M50
M58

20
23
24
30

M3

M11
M19
M27
M35
M43
M51
M59

16
15
14
13
12
11
10
9

11
15
19
23
27
31

21
26
14
6

M4

M12
M20
M28
M36
M44
M52
M60

26
28
30
32
25
27
29
31

56
55
54
53
52
51
50
49

12
16
20
24
28
32

29

32
22

M5

M13
M21
M29
M37
M45
M53
M61

18
20
22
24
17
19
21
23

24
23
22
21
20
19
18
17

13
17
21
25
29

12
18
27
11

M6

M14
M22
M30
M38
M46
M54
M62

10
12
14
16

11
13
15

64
63
62
61
60
59
58
57

28

w

M7

M15
M23
M31
M39
M47
M55
M63

N Ww-=00+~N

32
31
30
29
28
27
26
25

17
10

25

M8

M16
M24
M32
M40
M48
M56
M64




where Mi is a binary digit. Then the permutation X = IP(M) is as follows:
M58 M50 M42 M34 M26 M18 M10 M2
M60 M52 M44 M36 M28 M20 M12 M4
M62 M54 M46 M38 M30 M22 M14 M6
M64 M56 M48 M40 M32 M24 M16 M8
M57 M49 M41 M33 M25 M17 M9 M1
M59 M51 M43 M35 M27 M19 M11 M3
M61 M53 M45 M37 M29 M21 M13 M5
M63 M55 M47 M39 M31 M23 M15 M7

Inverse permutation Y = IP" (X) = IP(IP(M)), Therefore we can see that the original ordering of
the bits is restored.

2.8.3 Details of Single Round

The below figure 2.9 shows the internal structure of a single round. The left and right halves of
each 64-bit intermediate value are treated as separate 32-bit quantities, labeled L (left) and R
(right). The overall processing at each round can be summarized in the following formulas:

Li= Ri
Ri= Li.1 X F(Ri1, Ki)
< 32bits — <« 32bits —= <— 18 bits —> ~— 28 hits —
L, Ri-) Ci-1 D;-,
."Iﬁr ________ 1| l l
[ ] . : |
||/ Expansionfpermutation’\ | Left shift(s) Left shifi(s)
[ (E table) :
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[ |
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Figure 2.9 Single Round of DES Algorithm




The round key Ki is 48 bits. The R input is 32 bits. This R input is first expanded to 48 bits by using
a table that defines a permutation plus an expansion that involves duplication of 16 of the R bits.
The resulting 48 bits are XORed with Ki. This 48-bit result passes through a substitution function
that produces a 32-bit output, which is then permuted.

Definition of S-Boxes

The substitution consists of a set of eight S-boxes, each of which accepts 6 bits as input
and produces 4 bits as output. The first and last bits of the input to box Si form a 2-bit binary
number to select one of four substitutions defined by the four rows in the table for Si. The middle
four bits select one of the sixteen columns as shown in figure 2.10.

The decimal value in the cell selected by the row and column is then converted to its 4-
bit representation to produce the output.

For example, in S1 forinput 011001, the row is 01 (row 1) and the column is 1100 (column

12). The value in row 1, column 12 is 9, so the output is 1001.

[ R (32 bits) |

A8 bits

K (48 bits) |

Sy Sy S3 Sy Ss Se S+ Sg

| 32 bits |

Fig 2.10 Calculation of F(R, K)

2.8.4 Key Generation

The 64-bit key is used as input to the algorithm. The bits of the key are numbered from 1
through 64; every eighth bit is ignored. The key is first subjected to a permutation governed by a
table labeled Permuted Choice One. The resulting 56-bit key is then treated as two 28-bit
qguantities, labeled C0 and DO.

At each round, Ci-1 and Di-1 are separately subjected to a circular left shift, or rotation,
of 1 or 2 bits. These shifted values serve as input to the next round. They also serve as input to
Permuted Choice 2, which produces a 48-bit output that serves as input to the function F(Ri-1, Ki).
DES Key Schedule Calculation

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64




(b) Permuted Choice One (PC-1)
57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4

(c) Permuted Choice Two (PC-2)
14 17 11 24 1 5 3 28
15 6 21 10 23 19 12 4
26 8 16 7 27 20 13 2
41 52 31 37 47 55 30 40
51 45 33 48 44 49 39 56
34 53 46 42 50 36 29 32

(d) Schedule of Left Shifts
Roundnumber:12345678910111213 141516
Bitsrotated: 1122222212 2 2 2 2 2 1

2.8.5 DES Decryption:

As with any Feistel cipher, decryption uses the same algorithm as encryption,except that the
application of the subkeys is reversed. Additionally, the initial andfinal permutations are reversed.

2.8.6 The Avalanche Effect:

A desirable property of any encryption algorithm is that a small change in either the plaintext or
the key should produce a significant change in the ciphertext. In particular, a change in one bit
of the plaintext or one bit of the key should produce a change in many bits of the ciphertext.

Input Output

4AS6FBC256248CAGDCC
C554235ADCFFFFF4AS6
0000 ————=| Hash Function |[=—=——=| FBC256248CAGDCCC554
235ADCFFFFF

SA40EAC250248CAGDBC
C484235BDCFFFFF4456E
=————=| Hash Function |=—— | AB256208CA6DCCC5541
35ADCTEEFE

0001




2.9 THE STRENGTH OF DES
The strength of DES depends on two factors: key size and the nature of the algorithm.

1. The Use of 56-Bit Keys
With a key length of 56 bits, there are 25¢ possible keys, which is approximately 7.2 x 10",
Thus, a brute-force attack appears impractical.

2. The Nature of the DES Algorithm
In DES algorithm, eight substitution boxes called S-boxes that are used in each iteration.
Because the design criteria for these boxes, and indeed for the entire algorithm, were not made
public, there is a suspicion that the boxes were constructed in such a way that cryptanalysis is
possible for an opponent who knows the weaknesses in the S-boxes. Despite this, no one has
so far succeeded in discovering the supposed fatal weaknesses in the S-boxes.

3. Timing Attacks
A timing attack is one in which information about the key or the plaintext is obtained by
observing how long it takes a given implementation to perform decryptions on various ciphertexts.
A timing attack exploits the fact that an encryption or decryption algorithm often takes slightly
different amounts of time on different inputs.

2.9.1 Attacks on DES:

Two approaches are:
1. Differential crypt analysis
2. Linear crypt analysis

2.9.1.1 Differential Cryptanalysis

Differential cryptanalysis is the first published attack that is capable of breaking DES in less
than 255 complexities. The need to strengthen DES against attacks using differential
cryptanalysis played a large part in the design of the S-boxes and the permutation P.

¢ One of the most significant recent (public) advances in cryptanalysis

e Powerful method to analyze block ciphers

¢ Used to analyze most current block ciphers with varying degrees of success




Differential Cryptanalysis Attack:

The differential cryptanalysis attack is complex. The rationale behind differential
cryptanalysis is to observe the behavior of pairs of text blocks evolving along each round of the
cipher, instead of observing the evolution of a single text block.

Consider the original plaintext block m to consist of two halves m0, m1. Each round of DES
maps the right-hand input into the left-hand output and sets the right-hand output to be a function
of the left-hand input and the subkey for this round.

So, at each round, only one new 32-bit block is created. If we label each new block
m1(2 < i<17), then the intermediate message halves are related as follows:

Mis1 = miqa Sf(mi, Ki),i=1,2, ..., 16

In differential cryptanalysis, we start with two messages, m and m', with a known XOR difference
Am=m ®m', and consider the difference between the intermediate message halves: mi= m; Dm;'
Then wehave:

Amiq =My D m.4
= [mes D(miki 1)) B [ ms @ f(m, k)
= Amiq T f(mi,ki ) = f(m,ki)]

Let us suppose that there are many pairs of inputs to f with the same difference yield the
same output difference if the same subkey is used.

Therefore, if we know Ami.; and Am; with high probability, then we know Am;.1 with high
probability. Furthermore, if a number of such differences are determined, it is feasible to determine
the subkey used in the function f.

2.9.1.2 Linear Cryptanalysis

This attack is based on the fact that linear equation can be framed to describe the
transformations.
The principle of linear crypt analysis is as follows
Length of CT and PT =n bits;
key=mbit
Block of cipher text is c[1]c[2]...c[n]; Block
of key is k[1]k[2]....k[m]
A[lj,..k] = A[i] @A[j] D. DPALK]

» Can attack DES with 247 known plaintexts, still in practice infeasible
» Find linear approximations with prob p != %
»  Pli1,i2,...,ia](+)C[j1,j2,---,jb] = K[K1,K2,...,kc]]Where ia, jb, ke are bit locations in p, ¢, k




2.10 BLOCK CIPHER PRINCIPLES
There are three critical aspects of block cipher design:
1. Number of rounds,
2. Design of the function F
3. Key scheduling.

Number of Rounds
o When the greater the number of rounds, the more difficult it is to perform cryptanalysis,
even for a relatively weak F.
o The number of rounds is chosen so that known cryptanalytic efforts require greater effort
than a simple brute-force key search attack

o When round DES S= 16, a differential cryptanalysis attack is slightly less efficient than
brute force, the differential cryptanalysis attack requires 2% operations.
o It makes it easy to judge the strength of an algorithm and to compare differentalgorithms.

Design of Function F
This is the most important function

Criteria needed for F,
¢ It must be difficult to “unscramble” the substitution performed by F.
e The function should satisfy strict avalanche criterion (SAC) which states that any output
bit j of an S-box should change with probability 1/2 when any single input bit i is inverted

foralli, j.

e The function should satisfy bit independence criterion(BIC), which states that output bits
j and k should change independently when any single input bit i is inverted for all i, j, and
K.

Key Schedule Algorithm

e The key is used to generate one sub key for each round.
e The sub keys to maximize the difficulty of deducing individual sub keys and the difficulty
of working back to the main key.

2.10.1 Stream Cipher and Block Cipher

A stream cipher is one that encrypts a digital data stream one bit or one byte at a time.
E.g, vigenere cipher. Figure (2.11a)

A block cipher is one in which a block of plaintext is treated as a whole and used to produce a
cipher text block of equal length. Typically, a block size of 64 or 128 bits is used. Figure (2.11b)
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Figure 2.11 Stream Cipher and Block Cipher

Many block ciphers have a Feistel structure. Such a structure consists of a humber of
identical rounds of processing.
In each round, a substitution is performed on one half of the data being processed,
followed by a permutation that interchanges the two halves.
The original key is expanded so that a different key is used for each round.
The Data Encryption Standard (DES) has been the most widely used encryption algorithm.
It exhibits the classic Feistel structure.
The DES uses a 64-bit block and a 56-bit key. Two important methods of cryptanalysis are
differential cryptanalysis and linear cryptanalysis. DES has been shown to be highly
resistant to these two types of attack.
A block cipher operates on a plaintext block of n bits to produce a ciphertext block of n bits.
There are possible different plaintext blocks and, for the encryption to be reversible (i.e.,
for decryption to be possible), each must produce a unique ciphertext block. Such a
transformation is called reversible, or non singular
In particular, Feistel proposed the use of a cipher that alternates substitutions and
permutations, where these terms are defined as follows:

e Substitution: Each plaintext element or group of elements is uniquely replaced by

a corresponding ciphertext element or group of elements.

e Permutation: A sequence of plaintext elements is replaced by a permutation of that
sequence. That is, no elements are added or deleted or replaced in thesequence,
rather the order in which the elements appear in the sequence is changed.




>

Two methods for frustrating statistical cryptanalysis are:
e Diffusion — Each plaintext digit affects many ciphertext digits, or each ciphertext
digit is affected by many plaintext digits.
e Confusion - Make the statistical relationship between a plaintext and the
corresponding ciphertext as complex as possible in order to thread attempts to
deduce the key.

Diffussion

Message > Cipher

Encryption key

2.10.2 Feistel cipher structure

>
>

>

The left-hand side of figure 2.12 depicts the structure proposed by Feistel.

The input to the encryption algorithm is a plaintext block of length 2w bits and a key K. the
plaintext block is divided into two halves Lo and Ro.

The two halves of the data pass through n rounds of processing and then combine to
produce the ciphertext block. Each round i has inputs Li.1 and Ri.1, derived from theprevious
round, as well as the subkey Ki, derived from the overall key K.

In general, the subkeys K| are different from K and from each other. All rounds have the
same structure.

A substitution is performed on the left half of the data (as similar to S-DES). This is done by
applying a round function F to the right half of the data and then taking the XOR of the
output of that function and the left half of the data.

The round function has the same general structure for each round but is parameterized
by the round subkey ki. Following this substitution, a permutation is performed that consists
of the interchange of the two halves of the data.

This structure is a particular form of the substitution-permutation network.
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Figure 2.12 Feistel Encryption and Decryption (16 rounds)
The features of Feistel network are:
eBlock size - Increasing size improves security, but slows cipher
eKey size - Increasing size improves security, makes exhaustive key searching harder,
but may slow cipher

eNumber of rounds - Increasing number improves security, but slows cipher
eSubkey generation - Greater complexity can make analysis harder, but slows cipher
«Round function - Greater complexity can make analysis harder, but slows cipher

» The process of decryption is essentially the same as the encryption process.

» The rule is as follows: use the cipher text as input to the algorithm, but use the subkey
ki in reverse order. i.e., ki in the first round, kn.1 in second round and so on.

» For clarity, we use the notation LE; and RE; for data traveling through the decryption
algorithm and LD; and RD;.

» The above diagram indicates that, at each round, the intermediate value of the decryption

process is same (equal) to the corresponding value of the encryption process with two
halves of the value swapped.




i.e., RE; || LE; (or) equivalently RD1s.; || LD16.i

» After the last iteration of the encryption process, the two halves of the output are
swapped, so that the cipher text is RE+¢ || LE 6.

» The output of that round is the cipher text. Now take the cipher text and use it as input to
the same algorithm.

» The input to the first round is RE1¢ || LE 16, which is equal to the 32-bit swap of the output
of the sixteenth round of the encryption process.

» Now we will see how the output of the first round of the decryption process is equal to a
32-bit swap of the input to the sixteenth round of the encryption process.

» First consider the encryption process,

LEis = RE1s

RE1s = LE1s @ F (RE1s, Kie)

On the decryption side,
LD1 = RDo = LE15 = RE15
RD1 = LDo 69 F (RDO, K16)
= RE+6 & F (RE1s5, K1e)
= [LE+s @ F (RE1s, Ki6)] @ F (RE1s, K1p)
=LE+s
Therefore, LD1= RE15, RD1 = LE15
In general, for the ith iteration of the encryption algorithm,
LEi = REi1
REi = LEi1 @ F (REi.1, Kj)
> Finally, the output of the last round of the decryption process is REg || LEo. A 32-bit swap
recovers the original plaintext.

2.11 BLOCK CIPHER MODES OF OPERATION

o Block Cipher is the basic building block to provide data security.
e To apply the block cipher to various applications, NIST has proposed 4 modes of
operation. The block cipher is used to enhance the security of the encryption algorithm

2.11.1 Multiple Encryption and Triple DES

The vulnerability of DES to a brute-force attack has been detected by using two approaches are
shown in figure 2.13
1. One approach is to design a completely new algorithm, of which AES is a prime example
2. Another alternative, which would preserve the existing investment in software and
equipment, is to use multiple encryptions with DES and multiple keys.

Double DES
The simplest form of multiple encryptions has two encryption stages and two keys. Given a

plaintext P and two encryption keys K1 and Kz, cipher text C is generated as
C = E(Ky. E(K.. P))

Decryption requires that the keys be applied in reverse order:
P = D(K. D(K:. C))




For DES, this scheme apparently involves a key length of 56 * 2 = 112 bits, resulting in a
dramatic increase in cryptographic strength.
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(a) Double encryption
Figure 2.13 Multiple Encryption

Reduction to a Single Stage
Suppose it were true for DES, for all 56-bit key values, that given any two keys K; and
K>, it would be possible to find a key Ks such that

E(K,, E(K,. P)) = E(K;, P)
Meet-in-the-Middle Attack
The use of double DES results in a mapping that is not equivalent to a single DES
encryption. But there is a way to attack this scheme, one that does not depend on any particular
property of DES but that will work against any block encryption cipher. This algorithm, known as
a meet-in-the-middle attack.
It is based on the observation that, if we have
C = E(K. E(K. P))
Then
A =EK.P)=D(K,.(C)
Given a known pair, (P, C), the attack proceeds as follows. First, encrypt P for all 256
possible values of Ky. Store these results in a table and then sort the table by the Values of X.
Next, decrypt C using all 256 possible values of K2. As each decryption is produced,
check the result against the table for a match.
If a match occurs, then test the two resulting keys against a new known plaintext-cipher
text pair. If the two keys produce the correct cipher text, accept them as the correct keys.
For any given plaintext P, there are 264 possible cipher text values that could beproduced
by double DES. Double DES uses, in effect, a 112-bit key, so that there are 2112 possible keys.

Triple DES with Two Keys

To overcome the meet-in-the-middle attack is to use three stages of encryption with three
different keys. This is called ad Triple DES or 3DES as shown in figure 2.14.

The known plain text attack in 2''2, The key length of 56 * 3 = 168 bits which is a
drawback.




Tuchman proposed a triple encryption method that uses only two keys given plain text ki,k2
. The final cipher text is
C = E(K;, D(K;, E(K;, P)))
P = D(K,. E(K;, D(K;. €)))
e The function follows an encrypt-decrypt-encrypt (EDE)sequence

Its only advantage is that it allows users of 3DES to decrypt data encrypted by users of the older
single DES:
C = E(K, D(K,, E(K;, P))) = E(K,, P)
P = D(K, E(K;, D(K}, €))) = D(K,, ©)
o 3DES with two keys is a relatively popular alternative to DES
o There are no practical cryptanalytic attacks on 3DES.
e The cost of a brute-force key search on 3DES is on the order of2'"2

l"‘,1 K 2 l"‘,1
A B
;: _‘—(JE“ \M—(\b_’_ 'I-"'

Encryption
K, K K,
i B A
L" d(% &—(\b_’_ I;
Decryption

(b)) Triple encryption

Figure 2.14 Triple DES

The first serious proposal came from Merkle and Hellman
1. Merkle and Hellman
The concept is to find plaintext values that produce a first intermediate value of A =0 and then
using the meet-in-the-middle attack to determine the two keys.
e The level of effort is 25,
e The technique requires 256 chosen plaintext-cipher text pairs, which is a number
unlikely to be provided.
2. known - plaintext attack:

The attack is based on the observation that if we know A and C then the problem reduces
to that of an attack on double DES.

The attacker does not know A, even if P and C are known, as long as the two keys are
unknown. The attacker can choose a potential value of A and then try to find a known (P, C) pair
that produces A.

The attack proceeds as follows.

Step 1:
e Obtain n (P, C) pairs. This is the known plaintext. Place these in a table sorted on the

values of P
Step 2:

e Pick an arbitrary value a for A, and create a second table with entries defined in the
following fashion.

e For each of the 2% possible keys K = i, calculate the plaintext value Pi that produces a.

e For each P; that matches an entry in Table 1, create an entry in Table 2 consisting of the
Ky value and the value of B that is produced.




Step 3:
o We now have a number of candidate values of Ky in Table 2 and are in a position to
search for a value of Ka.
o For each of the 256 possible keys K; = j, calculate the second intermediate value for our
chosen value of a

o If there is a match, then the corresponding key i from Table 2 plus this value of j are
candidate values for the unknown keys (K1, K2).
Step 4:
o Test each candidate pair of keys (i, j) on a few other plaintext-cipher text pairs.
o If a pair of keys produces the desired cipher text, the task is complete. Ifno pair
succeeds, repeat from step 1 with a new value of a.

2.11.2 MODE 1: Electronic Code Book

The simplest mode is the electronic codebook (ECB) mode shown in figure 2.15. Here
plaintext is handled one block at a time and each block of plaintext is encrypted using the same
key.

The term codebook is used because, for a given key, there isa unique cipher text for every b-
bit block of plaintext.

When the message longer than b bits, to break the message into b-bit blocks. For the last
block when the no of bits is less than b, padding the last block if necessary.

Decryption is performed one block at a time, always using the same key.

Uses: The ECB method is ideal for a short amount of data, such as an encryption key.
Disadvantage:

When b* -bit block of plaintext appears more than once in the message, it always
produces the same cipher text output.

For lengthy messages, the ECB mode may not be secure. If the message is highly
structured, it may be possible for a cryptanalyst to exploit these regularities.

If the message has repetitive elements with a period of repetition a multiple of b bits, then
these elements can be identified by the analyst.

This may help in the analysis or may provide an opportunity for substituting or
rearranging blocks.

I_. Encrypt |_> Encrypt . e I—’ Encrypt

{a) Encryption
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Figure 2.15 Electronic Code Book (ECB)
Mode Properties for Evaluating and Constructing ECB
Overhead: The additional operations for the encryption and decryption operation when compared
to encrypting and decrypting in the ECB mode.
Error recovery: The property that an error in the ith cipher text block is inherited by only a few
plaintext blocks
Error propagation: It is meant here is a bit error that occurs in the transmission of a cipher text
block, not a computationalerror in the encryption of a plaintext block. Diffusion:
Low entropy plaintext blocks should not be reflected in the cipher text blocks. Roughly, low entropy
equates to predictability or lack of randomness
Security: Whether or not the cipher text blocks leak information about the plaintext blocks.

2.11.3 MODE 2: Cipher Block Chaining Mode

This method is to overcome the disadvantage of ECB (i.e) when the PT block is repeated
CBC produces different cipher text blocks

The input to the encryption function for each plaintext block bears no fixed relationship to
the plaintext block. Therefore, repeating patterns of b bits are not exposed.

For decryption, each cipher block is passed through the decryption algorithm. The result
is XORed with the preceding cipher text block to produce the plaintext block are shown in figure
2.16.

C; = E(K.[C;-1 @ P))

(a) Encryption
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Figure 2.16 Cipher Block Chaining (CBC) Mode
Then

To produce the first block of cipher text, an initialization vector (1V) is XORed with the first
block of plaintext.

On decryption, the IV is XORed with the output of the decryption algorithm to recover the
first block of plaintext.

Size of IV = Size of data Blocks
We can define CBC mode as

C, = E(K.|P, ®IV]) P, = DIK.C)) ® IV

CBC C,=EK.[POCDj=2....N | P=DK.C)®C,1j=2.....N

For maximum security, the IV should be protected against unauthorized changes. This
could be done by sending the IV using ECB encryption

Reason for protecting the IV:

If an opponent is able to fool the receiver in to using a different value for IV, then the opponent is
able to invert selected bits in the first block of plaintext. To see this, consider

C, = E(K.[IVE P))
P, = IV@ DK, Cy)

Now use the notation that X[i] denotes the ith bit of the b-bit quantity X. Then
Pili] = IV[i] ® D(K, Cy)[i]
Then, using the properties of XOR, we can state

Pili]" = IV[i]' @ D(K, Cy)[i]
Where the prime notation denotes bit complementation. This means that if an opponent

can predictably change bits in 1V, the corresponding bits of the received value of P1 can be
changed.




2.11.4 MODE 3: Cipher Feedback Mode:

We know that the DES is a block cipher.it is possible to convert block cipher into stream Cipher
using CFB mode

The advantages of CFB is that

¢ Eliminates the need to pad a message
e |t also can operate in real time
e The length of the CT =Length of PT

Figure 2.17 depicts the CFB scheme. In the figure 2.17, it is assumed that the unit of
transmission is s bits; a common value is s = 8.

The units of plaintext are chained together; to get the cipher text is a function of all
preceding plaintext. Here the plaintext is divided into segments of s bits.

Encryption:

The input to the encryption function is a b-bit shift register that is initially set to some
initialization vector (1V).

The leftmost (most significant) s bits of the output of the encryption function are XORed
with the first segment of plaintext P1 to produce the first unit of cipher text C1.

The contents of the shift register are shifted left by s bits, and C1 is placed in the
rightmost (least significant) s bits of the shift register.

This process continues until all plaintext units have been encrypted.
Decryption:

The same scheme is used, except that the received cipher text unit is XORed with the
output of the encryption function to produce the plaintext unit.

Let MSBs(X) be defined as the most significant s bits of X. Then
C, = P, @ MSB,E(K. 1V)]
Therefore, by rearranging terms:
P, = C; ® MSB,[E(K. IV)]

The same reasoning holds for subsequent steps in the process.
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Figure 2.17 S-bit Cipher Feedback (CFB) mode
We can define CFB mode as follows
L=1v L =1v
L=TSBiAE-DCy =21 ;N L=1SBy_(I_)|Cy j=2....,N
CFB : -t 1 Cj=1 ] j " h v 1 1]
0; = l;(K.I;) j=1..., N O;-= l:(l\’.lj_) j=1,....N
C; = P.@®MSB,(0)) j=1,....N P=C@®MSB0) j=1....N

2.11.5 Output Feedback Mode

The output feedback (OFB) mode is similar in structure to that of CFB.

The output of the encryption function is fed back to become the input for encrypting the
next block of plaintext as shown in figure 2.18.




Comparison between OFB and CFB

In CFB, the output of the XOR unit is fed back to become input for encrypting the next

block.

The other difference is that the OFB mode operates on full blocks of plaintext and cipher

text, whereas CFB operates on an s-bit subset. OFB encryption can be expressed as

Where
C; = F®E(K, Oj-4)

0; 1 = E(K, 0; 5)

we can rewrite the encryption expression as:
G = KO EK, [C1 @ P-i))
By rearranging terms, we can demonstrate that decryption works.
P, = G E(K, [Ci-y @ Fi1])

We can define OFB mode as follows.

I, = Nonce I, = Nonce
I =0, j=2, ... .N I = 0, j=2, ... .N
OFB O;=EK.L) j=1...N O;=EKIL) j=1....N
G=F®0o; j=1...,N-1 F=CG®m0o; j=1 ... . N—-1
Cy = Py @ MSB,(0)y) Py = Cy @ MSB,(0)

Let the size of a block be b. If the last block of plaintext contains u bits (indicated by *), with
u<b, the most significant u bits of the last output block Oy are used for the XOR operation

The remaining b - u bits of the last output block are discarded.
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Figure 2.18 Output Feedback Mode

Advantage:

Bit errors in transmission do not propagate (i.e.) when bit errors occurs in Ci, Pi is alone
affected

Disadvantage:
Vulnerable to message stream modification attack
2.11.6 Counter Mode

The counter (CTR) mode has increased recently with applications to ATM (asynchronous
transfer mode) network security and IP sec (IP security).

A counter equal to the plaintext block size is used. The counter value must be different
for each plaintext block as shown in figure 2.19.

The counter is initialized to some value and then incremented by 1 for each subsequent
block (modulo 2b, where b is the block size). For encryption, the counter is encrypted and then
XORed with the plaintext block to produce the cipher text block.




For decryption, the same sequence of counter values is used, with each
encrypted counter XORed with a cipher text block to recover the corresponding plaintext block.

Advantage:

Hardware efficiency

e CTR can be done in parallel
Software efficiency

e CTR supports parallel feature pipelining
Preprocessing

Simplicity
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Figure 2.19 Counter Mode




2.12 ADVANCED ENCRYPTION STANDARD (AES)

AES is a symmetric block cipher that is intended to replace DES as the approved
standard for a wide range of applications. Compared to public-key ciphers such as RSA, the
structure of AES and most symmetric ciphers is quite complex and cannot be explained as easily
as many other cryptographic, algorithms.

2.12.1 Finite Field Arithmetic

In AES, all operations are performed on 8-bit bytes. The arithmetic operations of addition,
multiplication, and division are performed over the finite field GF.A field is a set inwhich we
can do addition, subtraction, multiplication, and division without leaving the set.Division is defined
with the following rule: a/b = a(b-1).

An example of a finite field (one with a finite number of elements) is the set Zp consisting of
all the integers {0, 1, ¢, p - 1}, where p is a prime humber and in which arithmetic is carried out
modulo p.

The way of defining a finite field containing 2"elements; such a field is referred to as GF(2").
Consider the set, S, of all polynomials of degree n - 1 or less with binary coefficients. Thus, each
polynomial has the form

m— 1

flxy =a, x" '+ a, ox" %+ o+ oax +oay = >axt

Where each a; takes on the value 0 or 1. There are a total of 2ndifferent polynomials in S.
For n = 3, the 23 = 8 polynomials in the set are

0 x x2 x? + x
1 x + 1 x2 + 1 x2 4+ x + 1

Appropriate definition of arithmetic operations, each such set S is a finite field.
The definition consists of the following elements.
1. Arithmetic follows the ordinary rules of polynomial arithmetic using the basic rules
of algebra with the following two refinements.
2. Arithmetic on the coefficients is performed modulo 2. This is the same as the
XOR operation.
3. If multiplication results in a polynomial of degree greater than n - 1, then the n polynomial
is reduced modulo some irreducible polynomial m(x) of degree n. That is, we divide by
m(x) and keep the remainder. For a polynomial f(x), the remainder is expressed as r(x) =
f(x) mod m(x). A polynomial m(x) is called irreducible if and only if m(x) cannot be
expressed as a product of two polynomials, both of degree lower than that of m(x).
A polynomial in GF(2n) can be uniquely represented by its n binary coefficients(an-1an-2 ca0).
Therefore, every polynomial in GF(2n) can be represented by an n-bit number.

2.12.2 AES Structure
General Structure
e Figure 2.20 shows the overall structure of the AES encryption process. The cipher takes a
plaintext block size of 128 bits, or 16 bytes. The key length can be 16, 24, or32 bytes (128,
192, or 256 bits). The algorithm is referred to as AES-128, AES-192, orAES-256, depending
on the key length.




¢ The input to the encryption and decryption algorithms is a single 128-bit block. The block is
depicted as a 4 * 4 square matrix of bytes. This block is copied into the State array, which is
modified at each stage of encryption or decryption. After the final stage, State is copied to an
output matrix. These operations are depicted in Figure 2.21a. Similarly, the key is depicted as
a square matrix of bytes. This key is then expanded into an array of key schedule words.

¢ Below Figure 2.20 shows the expansion for the 128-bit key. Each word is four bytes, and the
total key schedule is 44 words for the 128-bit key. Note that the ordering of bytes within a
matrix is by column. The first four bytes of a 128-bit plaintext input to the encryption cipher
occupy the first column of the in matrix. The second four bytes occupy the second column,
and so on. Similarly, the first four bytes of the expanded key, which form a word, occupy the
first column of the w matrix. The cipher consists of N rounds, where the number of rounds
depends on the key length: 10 rounds for a 16-byte key, 12 rounds for a 24-byte key, and 14
rounds for a 32-byte key (Table 2.3).

e The first N - 1 round consist of four distinct transformation functions: Sub Bytes, Shift Rows,
Mix Columns, and AddRoundKey, which are described subsequently. The final round contains
only three transformations, and there is an initial single transformation (AddRoundKey) before
the first round, which can be considered Round 0. Eachtransformation takes one or more 4 *
4 matrices as input and produces a 4 * 4 matrix as output Figure 5.1 shows that the output of

each round is a 4 * 4 matrix, with the output of the final round being the cipher text.
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Figure 2.20 AES Encryption Process
Key Size {words/hyies/hits) 416128 6/24/192 Bi32/256
Plaintext Block Size (words/hvies/hits) 416/128 4/16/128 416/128
Number of Rounds 10 12 14
Round Key Size (words/hytes/hits) 416128 416128 416128
Expanded Key Size (words/hytes) 44176 527208 60240

Table 2.3 AES Parameters

2.12.3 Detailed Structure
Below Figure 2.20 shows the AES cipher shows the sequence of transformations in each round
and showing the corresponding decryption function.
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Fig: 2.21 Detail AES structure

Overall detail about AES structure.

1.

Itis not a Feistel structure. Recall that, in the classic Feistel structure, half of the data block
is used to modify the other half of the data block and then the halves are swapped. AES
instead processes the entire data block as a single matrix during each round using
substitutions and permutation.
The key that is provided as input is expanded into an array of forty-four 32-bitwords, w[i].
Four distinct words (128 bits) serve as a round key for each round as shown in figure 2.22;
Four different stages are used, one of permutation and three of substitution:
e Substitute bytes: Uses an S-box to perform a byte-by-byte substitution ofthe
block
¢ ShiftRows: A simple permutation
e MixColumns: A substitution that makes use of arithmetic over GF(28)
e AddRoundKey: A simple bitwise XOR of the current block with a portion of
the expanded key
The structure is quite simple. For both encryption and decryption as shown in figure 2.22,
the cipher begins with an AddRoundKey stage, followed by nine rounds that each includes
all four stages, followed by a tenth round of three stages.

Only the AddRoundKey stage makes use of the key. The AddRoundKey stage would
provide no security because they do not use the key. We can view the cipher asalternating
operations of XOR encryption (AddRoundKey) of a block, followed by scrambling of the
block (the other three stages), followed by XOR encryption, and so on. This scheme is
both efficient and highly secure.
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Fig 2.22 AES Encryption and Decryption

6. Each stage is easily reversible. For the Substitute Byte, ShiftRows, and MixColumns
stages, an inverse function is used in the decryption algorithm. For the AddRoundKey
stage, the inverse is achieved by XORing the same round key to the block, using the
result that.

ADBDB=A
7. The decryption algorithm makes use of the expanded key in reverse order. However, the

decryption algorithm is not identical to the encryption algorithm. This is a consequence
of the particular structure of AES.
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8. Once it is established that all four stages are reversible, it is easy to verify that
decryption does recover the plaintext.

9. The final round of both encryption and decryption consists of only three stages. Again,
this is a consequence of the particular structure of AES and is required, to make the cipher

reversible

2.12.4 AES Transformation Functions

Four transformations used in AES. For each stage, we describe the forward (encryption)
algorithm, the inverse (decryption) algorithm, and the rationale for the stage.

Substitute Bytes Transformation

Type 1: Forward and Inverse Transformations:

The forward substitute byte transformation, called Sub Bytes, is a simple tablelookup
(Figure 2.24a). AES defines a 16 * 16 matrix of byte values, called an S-box that contains a
permutation of all possible 256 8-bit values.




Each individual byte of State is mapped into a new byte in the following way: The leftmost
4 bits of the byte are used as a row value and the rightmost 4 bits are used as a column value.
These row and column values serve as indexes into the S-box to select a unique8-bit output value
as shown in figure 2.25.

For example, the hexadecimal value {95} references row 9, column 5 of the S-box, which
contains the value {2A}. Accordingly, the value {95} is mapped into the value {2A}.

I

San | 5o, I Saz | Sea S-box So.0 Sq'::rl Saz | Sas
5 51 - -
Sy L1 k2] sus 51 L1 Fy2 | sis
Sap | 521 | S22 | S23 S3e | 521 | S22 | 523
S3m | Faa | Saz | Sa3 Sin | F3a | Siz | 53

(a) Substitute byte transformation
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{b) Add round key transformation

Figure 2.24 AES Byte level Operations
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E |AD|E0 | 3B |4D(AE | 2A | F5 | BO | CE |EB (BB | 3C | 83 | 53 | 99 | &l

F 17 | 2B (04 |TE |BA| 77 (D6 | 26 | E1 | 69 | 14 | 63 | 55 | 21 | OC | TD
(b) Inverse S-box
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Figure 2.25 AES S-Boxes

Here is an example of the SubBytes transformation:

EA | 04 | 65 | 85 87 | F2 (4D | W7
B3 | 45 | 5D EC | 6E | 4C | 90
3C | 33 | 98 | BO - 4A | C3 | 46 | ET
FO | 2D | AD | C5 BC | DB | 95 | A6

The S-box is constructed in the following fashion (Figure 2.26a).

1. Initialize the S-box with the byte values in ascending sequence row by row. The first row
contains {00}, {01}, {02}, c, {OF}; the second row contains {10}, {11}, etc.; and so on. Thus, the
value of the byte at row y, column X is {yx}.

2. Map each byte in the S-box to its multiplicative inverse in the finite field GF(28); the value
{00} is mapped to itself.

3. Consider that each byte in the S-box consists of 8 bits labeled (b7, b6, b5, b4, b3,b2, b1, b0).
Apply the following transformation to each bit of each byte in the S-box:

| — s F s Y
bi = b; @ Pt sy mod 8 D Piis5ymod 8 P Piiv6) mod 8 B Piis 1) mods D i

Where ci is the ith bit of byte ¢ with the value {63}; that is, (c7CsCsC4C3C2C1C0) = (01100011). The
prime (,) indicates that the variable is to be updated by the value on the right.
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Figure 2.26 Construction of S-Box and 1S-Box

by 1 0 0 0 1 1 1 1][b, i
bi 1 1000 1 1 1|]|b i
b4 1 11 00 0 1 1]|b, 0
bif_[1 1 1100 0 1|{b|, |0
b) 1 1 1 1 1 0 0 0f]bs 0
be 001 1 1 1 1 0 0f]bs 1
be 000 1 1 1 1 1 0f]bs 1
(b |00 0 1 1 1 1 1])|by]| |O]

The AES standard depicts this transformation in matrix form as follows.

In ordinary matrix multiplication, each element in the product matrix is the sum of products
of the elements of one row and one column. Each element in the product matrix is the
bitwise XOR of products of elements of one row and one column.
As an example, consider the input value {95}. The multiplicative inverse in GF(28) is
{95} 1= {8A}, which is 10001010 in binary. Using above Equation
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The result is {2A}, which should appear in row {09} column {05} of the S-box.

Type 2: Inverse Substitute Byte Transformation:

0

0

0

0
0

The inverse substitute byte transformation, called InvSubBytes, For example, that the
input {2A}produces the output {95}, and the input {95} to the S-box produces {2A}. The inverse S-
box is constructed by applying the inverse of the transformation is followed by taking the

h: — bif—]:lmc'-d 8 EJ bi.:'—."':l mod 8 E bi.:'—ﬂ mod & '(\-_B 'f".:'
multiplicative inverse in GF(28). The inverse transformation is

where byte d = {05}, or 00000101. We can depict this transformation as follows.
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InvSubBytes is the inverse of Sub Bytes, label the matrices in sub Bytes and InvSubBytes
as X and Y, respectively, and the vector versions of constants ¢ and d as C and D, respectively.

For some 8-bit vector B, becomes B' = XB & C | We need to show that

Y(XB ® C)® D = B. To multiply out, we must showYXB & YC & D = B | This becomes
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1 0 0 0 0 0 0 0]|[by] 1] [1] N
0O 1 0 0 0 0 0 0||b 0 0 b,
0O 0 1 0 0 0 0 0| b 1 1 b
0.0 0 1 0 0 0 O0flbs|_|Of_|0|_|bs
00 0 0 1 0 0 0|/ by " |O|~|0 by
0O 0 0 0 0 1 0 0| bs 0 0 bs
0 0 0 0 0 0 1 0| bg 0 0 b

0 0 0 0 0 0 0 1]k |0O] LOJ | b7]

We have demonstrated that YX equals the identity matrix, and the YC = D,so that YC ©D
equals the null vector.

Type 3: Shift Rows Transformation
Forward and Inverse Shift RowsTransformations:

The forward shift row transformation, called Shift Rows, is depicted in Figure 2.27. The
first row of State is not altered. For the second row, a 1-byte circular left shift is performed. For

the third row, a 2-bytecircular left shift is performed. For the fourth row, a 3-byte circular left shift
is performed. The following is an example of Shift Rows

8 | F2 [ 4D | 97 87 | F2 | 4D | %7
EC | 6E | 4C | 90 6E | 4C | 90 | EC
4A | C3 | 46 | ET — 46 | ET | 4A | (3
8C | DB | 95 | A6 A6 | 8C | DB | 95

Figure 2.27 Forward Shift Row Transformation

The inverse shift row transformation, called InvShiftRows, performs the circular shifts
in the opposite direction for each of the last three rows, with a 1-byte circular right shift for the
second row, and as shown in figure 2.28

Fpo | Foa | Foz | o3 So0 | 5o | S0z | Sos

S1o| S| S1z2| 513 — | l l l | — S11 | 1z | 513 | ;1o

S| Sz | F22| Fa3 —s-—| | | | |—|-— S35 | Faa | Fan | F21

Fapn | Faa | Faz | Sa3 — | I I I | —— Fza | Fapn| Faa | Faz

[vryp——]
== L
=t

L

Spo | Soa | So.z | Soa Sho | Soa | foz | o=
Spo [0 | F12 | fiz Sio| %ia| Siz| iz
Sap | Faa | F2z | Saa o % | Fiz | %is
Sap | Su1 | S3.2 | S5 Sio| S50 | 53z | Sas

(b Mix column transformation

Figure 2.28 AES Row and Column Operations




Type 4: Mix Columns Transformation

Forward and Inverse Transformations: The forward mix column transformation,
called MixColumns, operates on each column individually. Each byte of a column is mapped
into a new value that is a function of all four bytes in that column. The transformation can be
defined by the following matrix multiplication on State

02 03 01 01| sp o1 Soz2 s So0 Soi Soz  Sog3
01 02 03 Mm Jip S B2 S| .’i'r|_l'_. .‘Fi_] ‘li: .‘.n"|__".,
01 01 02 03| S S92 %3| |[shy shy sk 853
03 001 01 02][ 80 531 S22 33 S0 %1 832 S

Each element in the product matrix is the sum of products of elements of one rowand one
column. In this case, the individual additions and multiplications are performed in GF(28).

SI;_‘r' = (2" 5o, j) @G- 51,5) @ 52, @ 53,
5. =50, B2 5;) DB 52D 5
52, = 50, @5, D(2-5,;) D (3-53))

$3,; = (350,) D5, D5, P (25
The MixColumns transformation on a single column of State can be expressed as
The following is an example of MixColumns:

87 F2 4D 97 47 40 A3 ac
6E 4C 90 EC 37 D4 70 OF
46 ET 4A C3 — 04 E4 3A 42
Ab BC DS 5 ED A5 Ab BC

The MixColumns transformation on the first column, we need to show that

(102) - (87)) @ (103} - {6E}) & [46) @ [A6) — (47)
(87) @ ({02} - {6E)) @ ({03} - [46}) @ {A6) = 37)
(87) & (6E) @ ({02} - 146}) @ ({03} - [A6)) = [94)
(103} (87)) @ [6E) @ [46) @ ({02) - (A6)) = {ED)

For the first equation, we have {02}.{87} =(0000 1110) @(0001 1011) =(0001 0101) and
{03}. {6E} = {6E}D({02}. {6E}) = (0110 1110)E(1101 1100) = (1011 0010) then

(02} {87) = 0001 0101

(03} - {6E} = 10110010
(46) — 01000110
[A6) — 10100110

01000111 = {47}




The inverse mix column transformation, called InvMixColumns, is defined by
the following matrix multiplication:

{]E [}B [}D {:]9 -i.l'||_[| 5-:|_ 1 .i.l'||_3 ﬁ-[ K3 S-jr|_.:| .‘,-'ﬁ_] :}-[J|_j .i.l'|1__'.}
09 0OE OB 0O0D S10 Sa J12 Ha .'S'lr..;| .T]r_] .‘Ff.: .?']r._'.;

0D 9 O0E OB || 5y 51 52 53 Sio S S 553
OB 0D 09 OE |50 S 52 $3 §3g0 §31 Si2 S
The inverse of Equation need to show
OE OB 0D 09 02 03 01 M Soo Spa1 Soz Spa Soo Soa Spz2 Spa
09 OE OB 0D || 01 02 03 O1 || s10 $11 512 S12 | | S1p S11 §12 S1a
0D 09 0OE OB (|01 01 02 03 || 525 521 S22 §21 - 52 §11 10§
OB 0D 09 0OE 03 01 01 02 Sip Sa1q S32 S1a Sap §11 F12 &

That is, the inverse transformation matrix times the forward transformation matrix
equals the identity matrix. To verify the first column of above Equation.

For the first equation, we have {OE}.{02} =00011100 and {09}.{03} ={09}f":'3'{09}.{02} =
00001001 & 00010010 =00011011then

(0E}- {02} = 00011100

(0B) — 00001011
(0D} = 00001101
(09} -{03] = 00011011

00000001

The encryption was deemed more important than decryption for two reasons:

1.For the CFB and OFB cipher modes only encryption is used.

2. AES can be used to construct a message authentication code and for this, only encryption is
used.

Type 5: AddRoundKey Transformation
Forward and Inverse Transformations

In the forward add round key transformation, called AddRoundKey, the 128 bits of State are
bitwise XORed with the 128bits of the round key.

The operation is viewed as a column wise operation between the 4 bytes of a State column and
one word of the roundkey; it can also be viewed as a byte-level operation.

The following is an example ofAddRoundKey:

47 40 | A3 | 4C AC | 19 28 57 EB | 39 BB 1B
37 D4 [ 70 9F 77 | FA | D1 5C 40 ZE | Al C3
94 E4 | 3A 42 & 66 | DC | 29 00 - F2 38 13 42
ED | A5 | Ao | BC F3 21 41 aA 1E 84 E7 | D&




The first matrix is State, and the second matrix is the round key.

The inverse add round key transformation is identical to the forward addround key
transformation, because the XOR operation is its own inverse.

The Figure 2.29 is another view of a single round of AES, emphasizing the mechanisms and
inputs of each transformation.

State matrix

at beginning

of round
™y
"-I SubBytes |
. L A

S-box

™y
| shiftRows |
o L A

0l 01 02 03 —'1 D /|

02 03 01 o1

01 02 03 01 )
-

03 01 01 02

MixColumns matrix

Round
key

™y

AddRound Key I

. L A

State matrix
at end
—
of round —
Constant inputs Variable input

Fig 2.29 AES Key Expansion
Type 6: Key Expansion Algorithm

The AES key expansion algorithm takes as input a four-word (16-byte) key and produces
a linear array of 44 words (176 bytes). This is sufficient to provide a four word round key for the
initial AddRoundKey stage and each of the 10 rounds of the cipher.

Each added word wl[ilJdepends on the immediately preceding word, w[i - 1], and the word
four positions back, wli - 4]. In three out of four cases, a simple XOR is used. For a word whose
position in the w array is a multiple of 4, a more complex function is used.

Figure 2.30 illustrates the generation of the expanded key, using the symbol g to represent
that complex function. The function g consists of the following sub functions

KeyExpansion (byte keyw[le], word w[44])

{

word temp

fFor (i = 0; i <= 4; di++) wl[i] = (key[4*i], key[4*is+l],
key [a4*i+2] ,
key[4*i+3]) ;

for (i = 4; i <= 44; i++)

{

tcemp = wl[i - 1] ;

if (i mod 4 = 0) temp = SubWord (RotWord (temp) )

@ Rcon[i/ 4] ;
wl[i] = wl[i-4] @ temp

}
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Figure 2.30 Key Expansion Algorithm

1. RotWord performs a one-byte circular left shift on a word. This means that a input word [BO,
B1, B2, B3] is transformed into [B1, B2, B3, BO].
2. SubWord performs a byte substitution on each byte of its input word, using the S-box.
3. The result of steps 1 and 2 is XORed with a round constant, Rcon[j].
The round constant is a word in which the three rightmost bytes are always 0.Thus, the
effect of an XOR of a word with Rcon is to only perform an XOR on the leftmost byte of the
word. The round constant is different for each round and is defined as Rcon[j] = (RCJj], 0, 0, 0),
with RC[1] = 1, RC]j] = 2 # RC][j-1] and with multiplication defined over the field GF(28). The
values of RCJ[j] in hexadecimal are

i 1 2 3 4 3 6 7 8 9 10
RClj] ) 02 04 08 10 20 40 80 1B 36

For example, suppose that the round key for round 8 is
EA D273 21B5 8D BA D2 31 2B F5 60 7F 8D 29 2F
Then the first 4 bytes (first column) of the round key for round 9 are calculated asfollows:

After After After XOR : wli] = temp
( i—
RotWord | SubWord Rean) with Rcon W= P wli—4]

36 TFESD292F | 8D292F7F | SDASISD2 | 1B0O00000 [ 46A515D2 [EAD27321 ACT7766F3

i (decimal)| temp




An AES Example

For this example, the plaintext is a hexadecimal palindrome. The plaintext,key, and resulting
ciphertext are

Plaintext: 012345678%abedeffedcbal876543210
Key: 0£1571c%47d%e8590cbTaddeatTE6798
Ciphertext: ff0bB44a0853bfT7c6934ab4364148Fb9

Results
Table 2.4 shows the expansion of the 16-byte key into 10 round keys. The process is formed
word by word, with each four-byte word occupying one column of the word round-key matrix.

Roey Waords Avuxiliary Function

wdk — Oof 15 Ti c9 RotWord (w3) — 7Tf &7 9298 af — x1
wWwl — a7 des e8 59 sSubWord (xl1) — 42 283 46 T9 — wl
w2 = 0c b7 ad 46 Rocon (1) = 01 o0 OO0 OO

w2 — af T£ 67 98 ¥y Rocon(ly = 42 85 46 79 — =zl
wWd — T (=) zl1 — dc 90 32T boO RotWord (w7) — 81 15 a7 I8 — x2
W3 — wWd L] wl — 9b 49 4df 9 subWord (x2) — 0c 39 3ISc 07 — w2
wWwhE — W3 (%] w2 = 97 fe T2 3f Rcom {23 — 02 00 00 OO0

wT — wWw6a B w3 — I8 81 15 a7 ¥2 O Rocom (2) — Oe 59 Sc 07 — =2
we — wWd =2 — d4d2 c2 6b b7 RotWord(wll)) — f£ff 43z c&6 e6 — x3
W = w8 '\% w3 — 49 g0 b4 Se subWord (x2) — 16 66 bi B2 — w3
Wl — W9 PHhwe — de Te o6 61 Rocon {32y = 04 00 OO0 OO0

will — Wwil0 & w7 — 6 f£ff 43 c6 ¥32 O Rcom (2) = 12 66 b4 8e — z3
wWl2 — W8 &9 =z2 — o0 af 4arf 29 RotWord (wl5) — ae Te o0 bl — x4
wWwlld = wil2 (O we — 89 2f 6b 67 sSubWord (x4) — 4 f2 ba <B — w4a
wld — wil3 (B wl0 = 57 51 ad 06 Rcon (4 = 08 00 OO0 OO0

wils = wild () will = bl ae Te c0 ¥4 O Rcom (4) — ec £3 ba <8 — 4

Table 2.4 Expansion of the 16-byte key into 10 round keys

The left-hand column shows the four round-key words generated for each round. The right-
hand column shows the steps used to generate the auxiliary word used in key expansion. The key
itself serving as the round key for round 0.

Next, Table 2.5 shows the progression of State through the AES encryption process. The
first column shows the value of State at the start of a round. For the first row, State is just the
matrix arrangement of the plaintext. The second, third, and fourth columns show the value of State
for that round after the SubBytes, ShiftRows,andMixColumns transformations, respectively. The
fifth column shows the roundkey.




Key Words Aunxiliary Function

wls — wlZ2 (D z4 — 2c SCc 65 1 RotWord{wle®) = &c dad 50 43 = x5
wWlT7T = wls (P wl3 = a5 73 0e 96 SubWord{x5) — 64 cl 53 la — §¥5
Wl — W1T (P wls = £2 22 a3 920 Rcon(S5) = 10 OO0 OO0 o0

wWle = wld P wls = 43 &C aa S0 ¥5i Rcon(S5) — 74 cl 53 la — =5
W20 = wWlE (5 =5 — 58 94 36 eb RotWora (wz3i) = 40 26 bDa Sc = X6
w21l — w20 (P wl7 — fd =e 38 74 SubWord (xm&6) = 0% 5a Ta 29 = §6
W22 — w2l Wl = 0of oC 9D eda Roon(&) = 20 00 OO OO0

W23 — W22 P wle = 4c 40 46 ba ¥6 & Rocon(6) = 29 Sa Ta 20 = =6
w23 — w20 26 = T1L T 4c c2 RotWord (w27) = a% a® ef cof = x7
W25 — W24 (Fi w2l — 8c 29 T4 bl SubWord (x7) — O0F d3 bL Ba — §¥7
W26 — W25 (Fi w22 — 83 a5 ef 52 Rcon {(7) — &0 00 OO0 OO

W27 = W26 (Fi W23 = cf as as er ¥7 F Rcon(7) — 46 43 arf &a — =T
W28 — w24 27 = 37 14 23 428 RotWord (w3lp = 74 al 2a fT7T — =8
W29 — w28 (w25 — bk 34 7 I7 SubWord {(xE) = ff 32 46 68 = §B&
W30 = W29 (W26 — 38 a8 08 as Rcon (&) = &0 o0 OO0 OO0

W3l = W30 (F W27 = £7 74 al 2a ¥8 B Rcon(B) = 7 32 a6 &8 — =&
w32 — w28 () z68 — 48 26 45 20 RotWorda (w3S)y = be 0b I8 3Ic — =9
W33 — W32 w29 = I3 1b az avy SubWord (xo) — ae 2D 07 b — §9
w3id — w33 P w30 — cb 3 aa T2 Rcocon {(2) = 1B OO0 OO0 OO0

W35 — W34 (FI W32 — 3C be Ob 3 ¥9 & Rcon (9) = bS5 Zb 07 eb = =9
w36 — w32 z9 — fd 04 42 cbh RotWord (w39) = 6b 41 56 £92 = x1d
wW3IT — W36 (F w33 — 0e 16 el Lc SubWord (xldO» = 7 83 bl 99 — wl0O
w38 — wWw3T (i w3id — o5 a5 Fa 62 Rcon {(10) = 36 OO0 OO OO0

w3s = wiIB (w35 = f9 6b 21 56 ¥10 & Rcon {(10) = 49 B3 bl 99 — zl0
w2l = w36 () z10 — ba Be I3 52

w4l — Wi (F w37 — ba 98 13 2

wWiF — w2l (f1 W38 — Tf 44 59 20

w43 — w42 (w39 = B6 Z6 1B TE

Table 2.5 progression of State through the AES encryption process

2.13 RC4 ALGORITHM

RC4 is an encryption algorithm created in 1987 by Ronald Rivest of RSA Security. Itis a
stream cipher (figure 2.31), which means that each digit or character is encrypted one at a time.
A cipher is a message that has been encoded.

A key input is pseudorandom bit generator that produces a stream 8-bit number that is
unpredictable without knowledge of input key.

The output of the generator is called key-stream, is combined one byte at a time with the
plaintext stream cipher using X-OR operation.

Key Key
K K
+ ¥
Psendorandom byte Pseudorandom byte
generator generator
(key stream penerator) {key stream penerator)

. % . { - :
Plaintext s . Ciphertext e . Plaintext
byte stream Tl byte stream Tl " byte stream
M ENCRYPTION C DECRYPTION M

Figure 2.31 Stream Cipher Diagram




Example

E.C4 Encryption

E.C4 Decryption
10011000 Plaintext 11001000 Ciphertext
& 01010000 Key Stream & 01010000 Key Stream
11001000 Ciphertext 10011000 Plaintext

2.13.1 Key Generation Algorithm

A variable-length key from 1 to 256 byte is used to initialize a 256-byte state vector S, with
elements S[0] to S[255]. For encryption and decryption, a byte k is generated from S by selecting

one of the 255 entries in a systematic fashion, then the entries in S are permutedagain
(Figure 2.32).

Initialization of S

The entries of S are set equal to the values from 0 to 255 in ascending orders, a temporary
vector T, is created. If the length of the key k is 256 bytes, then k is assigned to T. Otherwise, for

a key with length(klen) bytes, the first klen elements of T as copied from K and then K is repeated
as many times as necessary to fill T.

/I Initialization

for

i =0to 255 do S[i] = i;
T[i] = K[i mod klen];

Next, use T to produce the initial permutation of S. Starting with S[0] to S[255], and for

each SJi] algorithm swap it with another byte in S according to a scheme dictated by T[i], but S will
still contain values from 0 to 255:

/I Initial Permutation of S
j=0;

fori=0to 255

do

{

j=( + SJ[i] + T[i]) mod 256;
Swap(S[i], S[j]);

}

Pseudo random generation algorithm (Stream Generation)

Once the vector S is initialized, the input key will not be used. In this step, for each SJi]
algorithm swap it with another byte in S according to a scheme dictated by the current
configuration of S. After reaching S[255] the process continues, starting from S[0] again




/IStream Generation
i,j=0;

while (true)

i=(i+ 1) mod 256;
j=( + S[i]) mod 256;
Swap(SIi], S[il);

t = (S[i] + S[j]) mod 256;

k = SI[t];
i J
s
0 1 2 __§[i]+8[j]___ i _] 253 254 255
S
S[i]l>t——< S[j]
\Z
K S[i]+SI[j]
Figure 2.32 PRGA Algorithm
slefa]z2]s]¢]
« (LT[

{a) Initial state of S and T

J=]+S8[i] + T[i]

s - E - T i

Swa

() Initial permutation of 8

j=j+8]—

t = S[i] + S[J]

(c) Stream generation

Figure 2.33 RC4 Algorithm




Encrypt using XOR
To encrypt, XOR the value k with the next byte of plaintext.

Plaintext Keystream
0 1 2 plaintext length-1 0 1 2 plaintext length-1
XOR
0 1 2 plaintext length-1
Ciphertext

Figure 2.34 RC4 Encryption

Decrypt using XOR
To decrypt, XOR the value k with the next byte of ciphertext.

Ciphertext Keystream
0 1 2 plaintext length-1 0 1 2 plaintext length-1
XOR
0 1 2 plaintext length-1
Plaintext

Figure 2.35 RC4 Decryption

Advantage

> ltis faster and more suitable for streaming application

2.14 Key Distribution
2.14.1 Symmetric Key Distribution Using Symmetric Encryption
» In Symmetric key encryption, the two parties to an exchange must share the same
key, and that key must be protected from access by others. Therefore, the term that
refers to the means of delivering a key to two parties who wish to exchange data, without
allowing others to see the key.
» For two parties A and B, key distribution can be achieved in a number of ways, as

follows:




>

1. Acan select a key and physically deliver it to B.
2. A third party can select the key and physically deliver it to A and B.

3. If A and B have previously and recently used a key, one party can transmit the
new key to the other, encrypted using the old key.

4. If A and B each has an encrypted connection to a third-party C, C can deliver a
key on the encrypted links to A and B.

Physical delivery (1 & 2) is simplest - but only applicable when there is personal contact
between recipient and key issuer. This is fine for link encryption where devices & keys occur
in pairs, but does not scale as number of parties who wish to communicate grows.3 are

mostly based on 1 or 2 occurring first.

» A third party, whom all parties trust, can be used as a trusted intermediary to mediate the

establishment of secure communications between them (4). Must trust intermediary not to
abuse the knowledge of all session keys. As numbers of parties grow, some variant of 4is

only practical solution to the huge growth in number of keys potentially needed.

2.14.2 Key Distribution Centre

>

The use of a key distribution centre is based on the use of a hierarchy of keys. At a
minimum, two levels of keys are used.

Communication between end systems is encrypted using a temporary key, often referred
to as a Session key.

Typically, the session key is used for the duration of a logical connection and then
discarded

Master key is shared by the key distribution centre and an end system or user and used

to encrypt the session key.

2.14.3 Key Distribution Scenario

» Let us assume that user A wishes to establish a logical connection with B and requires a

one-time session key to protect the data transmitted over the connection. A has a master
key, K, known only to itself and the KDC; similarly, B shares the master key Ky with the
KDC (Figure 2.36). The following steps occur:
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Figure 2.36 Key Distribution Scenarios

An issue a request to the KDC for a session key to protect a logical connection to B. The
message includes the identity of A and B and a unique identifier, N4, for this transaction,
which we refer to as a nonce. The nonce may be a timestamp, a counter, or a random
number; the minimum requirement is that it differs with each request. Also, to prevent
masquerade, it should be difficult for an opponent to guess the nonce. Thus, a random
number is a good choice for a nonce.

The KDC responds with a message encrypted using Ka Thus, A is the only one who can
successfully read the message, and A knows that it originated at the KDC. The message
includes two items intended for A:

e The one-time session key, Ks, to be used for the session

e The original request message, including the nonce, to enable A to match this
response with the appropriate request
Thus, A can verify that its original request was not altered before reception by the KDC
and, because of the nonce, that this is not a replay of some previous request. In addition,
the message includes two items intended for B:

e The one-time session key, Ks to be used for the session

e An identifier of A (e.g., its network address), IDA
These last two items are encrypted with Kb (the master key that the KDC shares with B).

They are to be sent to B to establish the connection and prove A's identity.




3.

A store the session key for use in the upcoming session and forwards
to B the information that originated at the KDC for B, namely, E (Kb, [Ks
|| 1Da]). Because this information is encrypted with Ky, it is protected
from eavesdropping. B now knows the session key (Ks), knows that
the other party is A (from 1Da), and knows that the information
originated atthe KDC (because it is encrypted using Ko).
At this point, a session key has been securely delivered to A and B,
and they may begin their protected exchange.

However, two additional steps are desirable:

Using the newly minted session key for encryption, B sends a nonce, N, to A.

Also using Ks, A responds with f(N2), where f is a function that
performs some transformation on N2 (e.g., adding one).

2.14.4 Session Key Lifetime

>

The distribution of session keys delays the start of any exchange
and places a burden on network capacity. A security manager
must try to balance these competing considerations in
determining the lifetime of a particular session key.

For connection-oriented protocols, one obvious choice is to use
the same session key for the length of time that the connection

is open, using a new session key for each new session.

If a logical connection has a very long lifetime, then it would
be prudent to change the session key periodically, perhaps
every time the PDU (protocol data unit) sequence number
cycles.

For a connectionless protocol, such as a transaction-oriented
protocol, there is noexplicit connection initiation or termination.
Thus, it is not obvious how often one needs to change the
session key. The most secureapproach is to use a new session
key for each exchange.

A better strategy is to use a given session key for a certain

fixed period only or for acertain number of transactions.
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