

Association Based Classification

Hello. Sign in Account & Lists -

Returns & Orders Prime -

Best Sellers Gift Ideas New Releases Today's Deals Coupons AmazonBasics

ONE MICSEAND

Join Prime for ₹129/month *Redirects to PrimeVideo.com

1-48 of over 8,000 results for "eyeliner"

Sort by: Featured ∨

Amazon Prime

_ √prime

Department

Beauty

Eyeliners

Kajal & Kohls

Mascaras

Lip Make-up

Face Wash & Cleansers

Lip Glosses

Eyeshadow Bases and Primers

Eye Make-up Tools

✓ See All 2 Departments

Avg. Customer Review

10/13/2023

SPONSORED BY LAKME For smooth, deep lines that make your eyes shine Shop now

Lakmé Absolute Shine Liquid Eye Liner, Black, 4.5ml

Lakme 9 to 5 Impact Eye Liner, Black, 3.5ml

Lakmé Eyeconic Kajal, Royal Blue, 0.35g

Ad feedback 💭

Association – Based Classification

- Frequent Patterns(FP) and their associations govern interesting relationships between attribute conditions (values) and class labels.
- Associative rules(AR) show strong associations between attribute-value pairs
- Associative classification where association rules are generated and analyzed to classify the data.

Two step process:

- Generate FPs
- Rule generation

Example:

- Gender = Female ^ makeup = likes → buys_eyeliner = yes
- Gender= Female ^ makeup=notlike → buys_eyeliner = no
- Gender = Male ^ makeup= notlike → buys_eyeliner = no
- Gender = Male ^ makeup= like → buys_eyeliner =yes

Confidence of a rule:

For a given rule R, the percentage of tuples in D satisfying the rule antecedent that also have the class label C

E.g: Confidence=93% ie., female and makeup is likes belong to the class buys_eyeliner = yes

Support of a rule:

For a given rule R, the percentage of tuples in D satisfying the rule antecedent that also have the class label C

E.g: Support=20% ie., female and makeup is likes belong to the class buys_eyeliner = yes

Association rule mining

T1	A	В	C
T2	A	С	D
T3	В	С	D
T4	Α	D	E
T5	В	С	E

Rule	Support	Confidence
A=>D	2/5	2/3
C=>A	2/5	2/4
A => C	2/5	2/3
B, C=>A	1/5	1/3

Apriori Algorithm

C1

TID	Items 134	
T1		
T2	235	
T3	1235	
T4	2 5	
T5	135	

Support
3
3
4
1
4

TID Items
T1 134
T2 235
T3 1235
T4 25

135

Itemset	Support
{1,2}	0 1
{1,3}	3
{1,5}	2
{2,3}	2
{2,5}	3
{3,5}	3

Only Items present in F1

Itemset	Support
{1,3}	3
{1,5}	2
{2,3}	2
{2,5}	3
{3,5}	3

F2

TID	Items
T1	134
T2	235
Т3	1235
T4	2 5
T5	135

Itemset	Support
{1,3,5}	2
{2,3,5}	2

T5

ST S INSTITUTIONS

Applying Rules to Item set F3

1. {1,3,5}

- ✓ Rule 1: {1,3} → ({1,3,5} {1,3}) means 1 & 3 → 5
 Confidence = support(1,3,5)/support(1,3) = 2/3 = 66.66% > 60%
 Rule 1 is selected
- ✓ Rule 2: {1,5} → ({1,3,5} {1,5}) means 1 & 5 → 3
 Confidence = support(1,3,5)/support(1,5) = 2/2 = 100% > 60%
 Rule 2 is selected
- ✓ Rule 3: {3,5} → ({1,3,5} {3,5}) means 3 & 5 → 1
 Confidence = support(1,3,5)/support(3,5) = 2/3 = 66.66% > 60%
 Rule 3 is selected