
SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE
AND DATA SCIENCE

COURSE NAME : 19CS402 - DATABASE
MANAGEMENT SYSTEMS

II YEAR / III SEMESTER

Unit – 2

Relational Algebra

Relational Query Languages

▶ Query languages: Allow manipulation and retrieval of data from a

database.

▶ Relational model supports simple, powerful QLs:

▶ Strong formal foundation based on logic.

▶ Allows for much optimization.

▶ Query Languages != programming languages!

▶ QLs not intended to be used for complex calculations.

▶ QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

▶ Two mathematical Query Languages form the basis for “real”

languages (e.g. SQL), and for implementation:

▶ Categories

▶ Procedural Language : The user instructs the system to perform

a sequence of operations on the database to compute the

desired result.

▶ Eg: Relational Algebra

▶ Non Procedural Language : The user describes the desired

information without giving a specific procedure for obtaining

that information.

▶ Eg: Relational Calculus

Preliminaries

▶ A query is applied to relation instances, and the result of a

query is also a relation instance.

▶ Schemas of input relations for a query are fixed (but

query will run regardless of instance!)

▶ The schema for the result of a given query is also fixed!

Determined by definition of query language constructs.

Example Instances

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day

22 101 10/10/96

58 103 11/12/96

R1 S1

S2

Supplier-Part Example

Pno Pdesc Colour

p1

p2

p3

p4

screw

bolt

nut

washer

red

yellow

green

red

Part

Sno Pno O_date

s1 p1 nov 3

s2 p2 nov 4

s3 p1 nov 5

s3 p3 nov 6

s4 p1 nov 7

s4 p2 nov 8

s4 p4 nov 9

Supplies

supplies

Supplier Part

PK Sno PK Pno
(0,n) (1,n)

O_date

Sname

Location

Pdesc

Colour

Sno Sname Location

s1

s2

s3

s4

s5

Acme

Ajax

Apex

Ace
A-1

NY

Bos

Chi

LA
Phil

Supplier

Relational Algebra
▶ Basic operations:

Selects a subset of rows from relation.

Deletes unwanted columns from relation.

▶ Additional operations:

▶ Intersection, join, division, Assignment Not essential, but (very!)

useful.

▶ Extendend operations:

▶ Aggregate and outerjoin

▶ Since each operation returns a relation, operations can be composed!

(Algebra is “closed”.)

▶ Selection ()

▶ Projection ()
▶ Cross-product () Allows us to combine two relations.

▶ Set-difference () Tuples in reln. 1, but not in reln. 2.

▶ Union (∪) Tuples in reln. 1 and in reln. 2.

▶ Rename (ρ) Renaming the reln 1 to reln 2

The operation, denoted by −,

allows us to find tuples that are in one

relation but are not in another.

a) Union

b) Set-difference

c) Difference

d) Intersection
b) Set-

difference

S2

Projection

▶ Deletes attributes that are not in

projection list.

▶ Schema of result contains exactly the fields

in the projection list, with the same names

that they had in the (only) input relation.

▶ Projection operator has to eliminate

duplicates!

sname rating

yuppy 9

lubber 8

guppy 5
rusty 10


sname,rating

(S2)

age

35.0
55.5

age(S2)

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

Relational Algebra is a query language that takes two

relations as input and produces another relation as an output of

the query.

a) Relational

b) Structural

c) Procedural
d) Fundamental

c) Procedural

Projection:
• Projection returns a subset of the columns of a single table.

• Syntax:

Sno Sname Location

s1

s2

s3

s4

s5

Acme

Ajax

Apex

Ace
A-1

NY

Bos

Chi

LA
Phil

Supplier

Find all supplier names. Project Supplier over Sname

Sname

Acme

Ajax

Apex

Ace

A-1

Answer

π <list of columns> (table_name)

π Sname (Supplier)

Projection Exercise:

• Find the addresses of all

Cardholders.

• Observations:

– There is only one input table.

– The schema of the answer table is the

list of columns

– If there are many Cardholders living at

the same address these are not

duplicated in the answer table.

π b_addr (Cardholder)

Projection:

Duplicate ‘New Paltz’ values

in the Cardholder table are

dropped from the Answer

table

schema of answer table

is the same as the list of

columns in the query Answer

Selection
▶ Selects rows that satisfy selection

condition.

▶ Schema of result identical to

schema of (only) input relation.

▶ Result relation can be the input for

another relational algebra

operation! (Operator composition.)

sid sname rating age
28 yuppy 9 35.0
58 rusty 10 35.0

sname rating

yuppy 9

rusty 10

S2

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0 rating 8
 (S2)) sname,rating(


rating 8

(S2)

Selection:
• Selection returns a subset of the rows of a single table.

• Syntax:

Sno Sname Location

s1

s2

s3

s4

s5

Acme

Ajax

Apex

Ace
A-1

NY
Bos

Chi

LA
Phil

Supplier

Find all suppliers from Boston.

σ <condition> (table_name)

σ Location = ‘Bos’ (Supplier)

Selection Exercise:
• Find the Cardholders

from Modena.

• Observations:

– There is only one input table.

– Both Cardholder and the

answer table have the same

schema (list of columns)

– Every row in the answer has

the value ‘Modena’ in the

b_addr column.

Selection:

Answer

same schema

All rows in the answer have the

value ‘Modena’ in the

b_addr column

Union, Intersection, Set-Difference
▶ All of these operations take two input relations, which must be

union-compatible:

▶ Same number of fields.

▶ `Corresponding’ fields have the same type.

Union, Intersection, Set-Difference

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

S1

S2

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid sname rating age

22 dustin 7 45.0

S1 S2

sid sname rating age

22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

S1S2

sid sname rating age

31 lubber 8 55.5
58 rusty 10 35.0

S1S2

Union:

• Treat two tables as sets and perform a set

union

• Syntax:

• Observations:

– This operation is impossible unless both tables

involved have the same schemas. Why?

– Because rows from both tables must fit into a

single answer table; hence they must “look

alike”.

– Because some rows might already belong to

both tables

Table1 Table2

table_1 table_2

Union Example:

Sno

s1

s3

s4

Part1Suppliers

Sno

s2

s4

Part2Suppliers

Sno

s1

s2

s3

s4

Part1Suppliers

union

Part2Suppliers

Part1Suppliers = πSno(σPno = ‘p1’ (Supplies))

Part2Suppliers = πSno(σPno = ‘p2’ (Supplies))

Answer = Part1Suppliers Part2Suppliers

Database Principles

Union Exercise:

1234

1325

2653

7635

9823

5342

borrowerid

Borrowers

1345

1325

9823

2653

7635

borrowerid

Reservers

1234

1325

2653

7635

9823

5342

1345

borrowerid

Borrowers

union

Reservers

not duplicated

• Find the borrower numbers of all borrowers who

have either borrowed or reserved a book (any book).

Reservers = πborrowerid (Reserves)

Borrowers = πborrowerid(Borrows)

Answer = Borrowers Reservers

Which of the following is used to denote

the selection operation in relational

algebra?

a) Pi (Greek)

b) Sigma (Greek)

c) Lambda (Greek)

d) Omega (Greek)

b) Sigma (Greek)

For select operation the appear in the

subscript and the argument

appears in the parenthesis after the sigma.

a) Predicates, relation

b) Relation, Predicates

c) Operation, Predicates

d) Relation, Operation Predicates,

relation

Intersection:
• Treat two tables as sets and perform a set

intersection

• Syntax:

• Observations:

– This operation is impossible unless both

tables involved have the same

schemas. Why?

– Because rows from both tables must fit

into a single answer table; hence they

must “look alike”.

Table1 ∩ Table2

Table1 Table2

Intersection
Example:

Sno

s1

s3

s4

Part1Suppl iers

Sno

s2

s4

Part2Suppliers

Part1Suppliers = πSno(σPno = ‘p1’ (Supplies))

Part2Suppliers = πSno(σPno = ‘p2’ (Supplies))

Sno

s4

intersect

Part2Suppliers

Answer = Part1Suppliers ∩ Part2Suppliers
Part1Suppliers

Intersection Exercise:

borrowerid

1234 1345

1325 1325

2653 9823

7635 2653

9823 7635

5342

Borrowers

borrowerid

Reservers

1325

2653

7635

9823

borrowerid

Borrowers

intesect

Reservers

• Find the borrower numbers of all borrowers

who have borrowed and reserved a book.

Reservers = πborrowerid (Reserves)

Borrowers = πborrowerid(Borrows)

Answer = Borrowers ∩ Reservers

Set Difference:
• Treat two tables as sets and perform a

set intersection

• Syntax:

• Observations:

– This operation is impossible unless

both tables involved have the same

schemas. Why?

– Because it only makes sense to

calculate the set difference if the two

sets have elements in common.

Table1 - Table2

Table1 Table2

Set Difference Example:

Sno

s1

s3

s4

Part1Suppliers

Sno

s2

s4

Part2Suppliers

Sno

s1

s3

Part1Suppliers

minus

Part2Suppliers

Part1Suppliers = πSno(σPno = ‘p1’ (Supplies))

Part2Suppliers = πSno(σPno = ‘p2’ (Supplies))

Answer = Part1Suppliers - Part2Suppliers

Set Difference Exercise:

• Find the borrower numbers of all borrowers who have

borrowed something and reserved nothing.

Reservers = πborrowerid (Reserves)

Borrowers = πborrowerid(Borrows)

borrowerid borrowerid

1234 1345

1325 1325

2653 9823

7635 2653

9823 7635

5342

Answer = Borrowers - Reservers
Borrowers Reservers

1234

5342

borrowerid

Borrowers

minus

Reservers

The operation, denoted by -,

allows us to find tuples that are in one

relation but are not in another.

a. Union

b. Set-difference

c. Difference

d. Intersection

b) Set

Difference

If E1 and E2 are relational algebra

expressions, then which of the following is

NOT a relational algebra expression ?

a. E1 𝖴 E2

b. E1 / E2

c. E1 - E2

d. E1 x E2

b) E1 / E2

The operation of a relation X, produces Y,

such that Y contains only selected

attributes of X. Such an operation is :

a. Projection

b. Intersection

c. Union

d. Difference

a) Projection

Relational

algebra is :
a. Data Definition Language

b. Meta Language

c. Procedural query language

d. Non procedural language

c)

Procedural

query

language

The result of the UNION operation between

R1 and R2 is a relation that includes

a. all the tuples of R1

b. all the tuples of R2

c. all the tuples of R1 and R2

d. all the tuples of R1 and R2 which have common

columns

D) all the tuples of R1 and R2 which have

common columns

Cross-Product/Cartesian Product

 Renaming operator:  (C(1 sid1,5 sid2), S1 R1)

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

▶ Each row of S1 is paired with each row of R1.

▶ Result schema has one field per field of S1 and R1, with field names `inherited’ if possible.

▶ Conflict: Both S1 and R1 have a field called sid.

S1

sid bid day

22 101 10/10/96

58 103 11/12/96

R1

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

• The Cartesian product of two sets is a set of pairs of

elements (tuples), one from each set.

• If the original sets are already sets of tuples then the tuples in

the Cartesian product are all that bigger.

• Syntax:

• As we have seen, Cartesian products are usually unrelated

to a real-world thing. They normally contain some noise

tuples.

• However they may be useful as a first step.

<table_name> x <table_name>

Cross-Product/Cartesian Product

Pno Pdesc Colour

p1

p2

p3

p4

screw

bolt

nut

washer

red

yellow

green

red

Sno Sname Location

s1

s2

s3

s4

s5

Acme

Ajax

Apex

Ace
A-1

NY
Bos

Chi

LA
Phil

Supplier Part

Sno Sname Location Pno Pdesc Color

s1

s2

s3

s4

s5

s1

Acme

Ajax

Apex

Ace

A-1

Acme

NY
Bos

Chi

LA

Phil

NY

p1

p1

p1

p1

p1

p2

screw

screw

screw

screw

screw

bolt

red

red

red

red

red

yellow

. . .

s5 A-1 Phil p4 washer red

Supplier x Part

5 rows 4 rows

20 rows

info:

7 rows

in total

noise:

13 rows

in total

Cross-Product/Cartesian Product
Example

Names = Project Cardholder over b_name

Addresses = Project Cardholder over b_addr

Names x Addresses

Names x Addresses

Names x Addresses

Info =

project cardholder

over b_name, b_addr

noise .

.

.

How many rows? 36

Cross-Product/Cartesian Product
Exercise:

Joins
▶ Condition Join:

S1 ⊳⊲
S1.sid  R1.sid

R1

▶ Result schema same as that of cross-product.

▶ Fewer tuples than cross-product.

▶ Filters tuples not satisfying the join condition.

▶ Sometimes called a theta-join.

(sid) sname rating age (sid) bid day

22
31

dustin
lubber

7
8

45.0
55.5

58
58

103
103

11/12/96
11/12/96

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid bid day

22 101 10/10/96

58 103 11/12/96

R1

S1

Joins

sid sname rating age bid day

22
58

dustin
rusty

7
10

45.0
35.0

101
103

10/10/96
11/12/96

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid bid day

22 101 10/10/96

58 103 11/12/96

R1

▶ Result schema similar to cross-product, but only one copy of

fields for which equality is specified.

▶ Natural Join: Equijoin on all common fields.


sid ,..,age,bid,..

(S1⊳⊲
sid

R1)

S1

▶ Equi-Join: A special case of condition join where the

condition c contains only equalities.

• The most useful and most common operation.

• Tables are “related” by having columns in common; primary key on

one table appears as a “foreign” key in another.

• Join uses this relatedness to combine the two tables into one.

• Join is usually needed when a database query involves knowing

something found in one table but wanting to know something

found in a different table.

• Join is useful because both Select and Project work on only one

table at a time.

Joins

Join Example:

What we know is here?

• Suppose we want to know the names of all parts

ordered between Nov 4 and Nov 6.

The names we want are here
related

tables

Join Example:

• Step 1: Without the join operator we would start by

combining the two tables using Cartesian Product.

• The table, Supplies x Part, now contains both

– What we know (OrderDate) and

– What we want (PartDescription)

• The schema of Supplies x Part is:

• We know, that a Cartesian Product contains some info rows

but lots of noise too.

Part x Supplies

Supplies x Part = {Sno, Pno, ODate, Pno, PDesc, Colour}

What we know. What we want

Join Example:
• The Cartesian Product has noise rows we need to get rid of

Sno Pno O_date Pno Pdesc Colour

s1

s1

s1

s1

s2

p1

p1

p1

p1

p2

nov 3

nov 3

nov 3

nov 3

nov 4

p1

p2

p3

p4

p1

screw

bolt

nut

washer

screw

red

yellow

green

red

red

. . .

s4 p4 nov 9 p4 washer red

Supplies x Part

info

noise

Supplies.Pno != Part.Pno Supplies.Pno = Part.Pno

Join Example:

• Step 2: Let’s get rid of all the noise rows from the Cartesian Product.

• The table, A, now contains both

– What we know (OrderDate) and

– What we want (PartDescription)

A = select (Supplies x Part) where Supplies.PNo = Part.PNo

Sno Pno O_date Pno Pdesc Colour

s1

s2

s3

s3

s4

s4

s4

p1

p2

p1

p3

p1

p2

p4

nov 3

nov 4

nov 5

nov 6

nov 7

nov 8

nov 9

p1

p2

p1

p3

p1

p2

p4

screw

bolt

screw

nut

screw

bolt

washe

r

red

yellow

red

green

red

yellow

red

– And no noise rows!
Select (Supplies x Part) where Supplies.Pno = Part.Pno

identical

columns

Database Principles

Join Example:

Sno Pno O_date Pdesc Colour

s1

s2

s3

s3

s4

s4

s4

p1

p2

p1

p3

p1

p2

p4

nov 3

nov 4

nov 5

nov 6

nov 7

nov 8

nov 9

screw

bolt

screw

nut

screw

bolt

washer

red

yellow

red

green

red

yellow

red

• Step 3: We now have two identical columns

– Supplies.Pno and Part.Pno

• We can safely get rid of one of these

project(select (Supplies x Part) where Supplies.Pno = Part.Pno)

over Sno, Supplies.Pno, O_date, Pdesc, Colour

) over

Sno, Supplies.Sno, O_date, Pdesc, Colour

Project (Select () where Supplies.Pno = Part.Pno

Join Example:
• Because the idea of:

1. taking the Cartesian Product of two tables with a common

column,

2. then select getting rid of the noise rows and finally

3. project getting rid of the duplicate column

is so common we give it a name - JOIN.

Supplies x Part

Join Example:
• SYNTAX:

Sno Pno O_date Pdesc Colour

s1

s2

s3

s3

s4

s4

s4

p1

p2

p1

p3

p1

p2

p4

nov 3

nov 4

nov 5

nov 6

nov 7

nov 8

nov 9

screw

bolt

screw

nut

screw

bolt

washer

red

yel low

red

green

red

yel low

red

Supplies Part =

project(select (Suppl ies x Part) where Suppl ies.Pno = Part .Pno)

over Sno, Suppl ies.Pno, O_date, Pdesc, Colour

Supplies Part

Join Example:
• Summary:

– Used when two tables are to be combined into one

– Most often, the two tables share a column

– The shared column is often a primary key in one of the

tables

– Because it is a primary key in one table the shared

column is called a foreign key in any other table that

contains it

– JOIN is a combination of

•Cartesian Product (to combine 2 tables in 1)

•Select (rows with identical key values)

•Project (out one copy of duplicate column)

Join Example: (Finishing Up):
• Let’s finish up our query.

• Step 4: We know that the only rows that really interest

us are those for Nov 4, 5 and 6.

A = Supplies JOIN Part

B = select A where O_date between ‘Nov 4’ and ‘Nov 6’

Sno Pno O_date Pdesc Colour

s2

s3

s3

p2

p1

p3

nov 4

nov 5

nov 6

bolt

screw

nut

yellow

red

green

B

Join Example (Finishing Up):

• Final Answer:

Sno Pno O_date Pdesc Colour

s2

s3

s3

p2

p1

p3

nov 4

nov 5

nov 6

bolt

screw

nut

yellow

red

green

• Step 5: What we wanted to know in the first place was the list of parts

ordered on certain days.

B

we want the values

in this column

Answer = project B over Pdesc

Pdesc

bolt

screw

nut

Answer

Join Summary:

• JOIN is the operation most often used to combine two

tables into one.

• The kind of JOIN we performed where we compare two

columns using the = operator is called the natural equi-join.

• It is also possible to compare columns using other operators

such as <, >, <=, != etc. Such joins are called theta-joins.

• These are expressed with a subscripted condition

R.A θ S.B

where θ is any comparison operator except =

Join Exercise:

• Find the author and title of books purchased for $12.00
– What we know, purchase price, is in the Copy table.

– What we want, author and title, are in the Book table.

– Book and Copy share a primary key/foreign key pair (Book.ISBN ,

Copy.ISBN)

purchase price

of $12.00

info we want

Join Exercise:
• Step 1: JOIN Copy and Book

• Step 2: Find the copies that cost $12.00

• Step 3: Find the author and title of those books.

A = Copy JOIN Book

B = Select A where p_price = 12.00

Answer = project B over author, title

author title

Brookes MMM

Answer

Division
▶ Not supported as a primitive operator, but useful for

expressing queries like:

▶ Find sailors who have reserved all boats.

▶ Precondition: in A/B, the attributes in B must be included in

the schema for A. Also, the result has attributes A-B.

▶ SALES(supId, prodId);

▶ PRODUCTS(prodId);

▶ Relations SALES and PRODUCTS must be built using

projections.

▶ SALES/PRODUCTS: the ids of the suppliers supplying ALL

products.

Examples of Division A/B
sno pno
s1
s1
s1
s1
s2
s2
s3

p1
p2
p3
p4
p1
p2
p2

s4 p2
s4 p4

pno

p2
pno

p2

p4

pno
p1
p2
p4

sno
s1
s2
s3
s4

sno

s1
s4

sno

s1

B1
B2

B3

A/B1

A/B2
A/B3

A

