

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

COURSE NAME : 19CS402 - DATABASE MANAGEMENT SYSTEMS

II YEAR / III SEMESTER Topic 1 : Entity Relationship Model

Components of ER Diagram

Entity – Relationship Model

- The overall logical structure of a database can be expressed graphically using E-R diagrams.
- Features of E-R Model
 - This is used to give structure to the data.
 - Model can be evolved independent of any DBMS
 - It is an aid for database design.
 - It is easy to visualize and understand.

- Entity set
- Attributes
- Relational sets

Entity Type

- Entity set
 - An entity is a 'thing' or an 'object' in a real world.
 - An entity set is a collection of entities having the same properties
 - Example
 - Person, car, house, book, publisher etc..,

Attributes

- The properties that describe an entity are called attributes.
- Example
 - **Customer (entity)**
 - Customer_id, Customer_name, city are called attributes.
- An attribute can be classified into various type Simple Attributes Composite attributes Single valued attributes Multi valued attributes Derived attribute

– An attribute that cannot be divided into further subparts

- Example
 - Roll_no, Acc_no
- Composite attributes

Simple attributes

- An attribute that can be divided into a set of subparts.
- Example
 - Customer_name divided
 - Firstname, Middlename, Lastna
 - Address
 - Street, City, Pincode

Roll_No

Single valued Attribute

- An attribute having only one value in a particular entity
- Example
 - In a customer entity,
 - Name, id, street are single valued attribute
- Multi valued attribute
 - An attribute having more than one value for a particular entity
 - Example
 - Customer (entity) (attribute) phone no
 - Student (entity) (attribute) hobby (reading, music, painting etc.,)
- Derived attribute
 - An attribute that is derived from other related attributes or entities
 - Example
 - Age of a customer entity set is derived from the attribute date_of _birth of a customer.

- Relationship is an association among several entities.
- Example
 - Person and company relationship

Types of Relationships

Unary relationship

- An unary relationship exists when an association is maintained within a single entity.
- Example
 - Boss and worker are two employees
 - Manage is association

• Binary relationship

A binary relationship exists when two entities are associated.

Ternary relationship

- A binary relationship exists when three entities are associated.
- Evamnle

- A quaternary relationship exists when there are four entities associated.
- Example

Constraints

- Two main important types of constraints are:-
 - Mapping cardinalities
 - Participation constraints

- Mapping cardinalities or cardinality ratio express the number of entities to which another entity can be associated via relationship set.
- Types are
 - One to one
 - One to many
 - Many to one
 - Many to many

- An entity in A is associated with at most one entity in B.
- An entity in B is associated with at most one entity in A

- An entity in A is associated with any number of (0 or more) entities in B.
- An entity in B is associated with at most one entity in A

Many to one

- An entity in A is associated with at most one entity in B.
- An entity in B is associated with Zero or more number of entities in A.

Many to Many

 An entity in A is associated with any number (0 or more) of entities in B and vice versa.

Participation Constraints

Total participation

- The participation of an entity set E in a relationship set R is said to be total if every entity in E participates in at least one relationship in R.
- Example
 - Salary relationship employees
- Partial participation
 - If only some entities in E participate in relationships in R
 - Employees relationship commission

- A key allows to identify a set of attributes or relationship.
- Different types of keys are
 - Super key
 - Candidate key
 - Primary key
 - Foreign key

• Super key

- A super key is a set of one or more attributes that allows us to identify uniquely an entity in the entity set,
- Example
 - Roll_no attribute of the entity set 'student'.
- Candidate key
 - A candidate key is a minimal super key for which no proper subsets can be formed.
 - Example
 - {studnt_name, student_class}
- Primary key
 - Primary key is a key that has unique value
 - Example
 - Employee (eno, ename, salary, job, dno), eno is the primary key
- Foreign key
 - An attribute in one relation whose value matches the primary key in some other relation is called a foreign key.
 - Example
 - Employee (eno, ename, salary, job, dno)
 - Dept (dno,dname,dloc)

Dno is primary key and eno is primary key

So dno is foreign key

- An entity set may not have sufficient attributes to from a primary key. Such an entity set is termed as weak entity set.
- Example
 - Payment entity set with the attributes of payment_type, payment_amount and payment_date.
- Strong Entity set
 - An entity set that has a primary key is termed as a strong entity set.
 - Example
 - Loan entity set with the attributes of loan_id, loan_amount, loan_type

E-R diagram symbols

Component name	Symbol	Description
all Rectangles		Represents entity sets
2) Ellipses	\bigcirc	Represents attributes
3) Diamonds	$\langle \rangle$	Represents relationship sets
#\times		Links attributes to entity sets & entity sets to relationship sets
5) Double ellipses		Represents multivalued attributes
1116) Dashed ellipses	(===)	Represents derived attributes
7) Double rectangles		Represents weak entity sets
8) Double lines		Represents total participation of an entity in a relationship set

Sec.

Alternative E-R Notations

. Los L-R ulayiam with aggregation

Instive E-R Notations

Fig. 1.36 Symbols used in the E-R diagram

Mrs.P.Revathi/AI & DS /SNSCE

E-R Diagram with relationships

1. One-to-Many:

2. Many-to-One:

Many - to - Many 4.

customer

borrower

Mrs.P.Revathi/AI & DS /SNSCE

E-R diagram with composite, multivalue and derived attributes

Construct an E-R diagram for a car insurance company whose customers own one or more cars each. Each car has associated with it zero to any number of recorded

Mrs.P.Revathi/AI & DS /SNSCE

struct an E-R diagram for a hospital with a set of patients and a set of medic ociate with each patient a log of various tests and examinations conducted.

Construct an E-R diagram to model an online book store.

Mrs.P.Revathi/AI & DS /SNSCE

Construct an E-R diagram for a banking system

Mrs.P.Revathi/AI & DS /SNSCE

Entity Relationship Model

- Peter Chen's Landmark Paper in 1976 "The Relationship Model: Toward a Unified View of Data" – Graphical representation of entities and their relationships – Entity Relationship (ER) Model Based on Entity, Attributes & Relationships
- Entity is a thing about which data are to be collected and stored e.g. EMPLOYEE
- Attributes are characteristics of the entity e.g. SSN, last name, first name
- Relationships describe an associations between entities i.e. 1:M, M:N, 1:1 – Complements the relational data model concepts
- Helps to visualize structure and content of data groups entity is mapped to a relational table
- Tool for conceptual data modeling (higher level representation) Represented in an Entity Relationship Diagram (ERD)
- Entity relational model is a model for identify entities to be represented in the database and representation of how those entities are related

Database Design Process

Database design process can be divided into 6 major steps:

- **1.Requirements Analysis**
- 2.Conceptual Database Design
- **3.Logical Database Design**
- 4.Schema Refinement
- 5. Physical Database Design
- 6.Security Design

- Advantages Exceptional conceptual simplicity
- easily viewed and understood representation of database
- facilitates database design and management Integration with the relational database model
- enables better database design via conceptual modeling
- Disadvantages Incomplete model on its own
- Limited representational power cannot model data constraints not tied to entity relationships » e.g. attribute constraints – cannot represent relationships between attributes within entities
- No data manipulation language (e.g. SQL) Loss of information content
- Hard to include attributes in ERD

- The E/R model allows us to sketch database schema designs. – Includes some constraints, but not operations.
- Designs are pictures called entity-relationship diagrams.
- Later: convert E/R designs to relational DB designs.

Entity Sets

- Entity = "thing" or object.
- Entity set = collection of similar entities. –
 Similar to a class in object-oriented languages.
- Attribute = property of (the entities of) an entity set. – Attributes are simple values, e.g. integers or character strings, not structs, sets, etc.

Entity Sets

- Entity set car has two attributes, name and manf (manufacturer).
- Each car entity has values for these three attributes, e.g. (color and design , model)