

Linkedlist based polynomial addition

Polynomial addition

- A polynomial p(x) is the expression in variable x which is in the form $(ax^n + bx^{n-1} + + jx + k)$
- where a, b, c, k are real numbers
- 'n' is non negative integer, which is called the degree of polynomial.
- An essential characteristic of the polynomial is that each term in the polynomial expression consists of two parts:
- ✓ one is the coefficient
- ✓ other is the exponent

Example:

- $4x^3 + 6x^2 + 10x + 6$
- here 4,6,10 and 6 are coefficients
- 3,2 and 1 is its exponential value.

Addition of two polynomial

Algorithm to add two polynomials using linked list

Let p and q be the two polynomials represented by linked lists

Step1: while p and q are not null, repeat step 2.

Step2: If powers of the two terms ate equal then if the terms do not cancel then insert the sum of the terms into the sum Polynomial

- Advance p
- Advance q
- Else if the power of the first polynomial> power of second
- Then insert the term from first polynomial into sum polynomial
- Advance p
- Else insert the term from second polynomial into sum polynomial
- Advance q

Step3: copy the remaining terms from the non empty polynomial into the sum polynomial.

PROGRAM


```
#include<stdio.h>
#include<stdlib.h>
```



```
typedef struct node
  int coef;
  int exp;
  struct node* next;
} node;
void get input(node** head)
  node* temp,*ptr;
  ptr = *head;
  temp = (node*)malloc(sizeof(node));
  printf("\nEnter coef : ");
  scanf("%d",&(temp->coef));
  printf("\nEnter exp : ");
  scanf("%d",&(temp->exp));
```



```
if(NULL == *head)
    *head = temp;
    (*head)->next = NULL;
  else
    while(NULL != ptr->next)
      ptr = ptr->next;
    ptr->next = temp;
    temp->next = NULL;
void display(node* head)
  while(head->next != NULL)
    printf("(%d.x^%d)+",head->coef,head->exp);
    head = head->next;
  printf("(%d.x^%d)",head->coef,head->exp);
  printf("\n");
```



```
void add(node* poly, node* poly1, node* poly2 ) //poly==result
  while(poly1->next && poly2->next)
    if(poly1->exp>poly2->exp)
      poly->coef = poly1->coef;
      poly->exp = poly1->exp;
      poly1 = poly1->next;
    else if(poly1->exp < poly2->exp)
      poly->coef = poly2->coef;
      poly->exp = poly2->exp;
      poly2 = poly2->next;
    else
      poly->coef = poly1->coef + poly2->coef;
      poly->exp = poly1->exp;
      poly1 = poly1->next;
      poly2 = poly2->next;
    poly->next = (node*)malloc(sizeof(node));
    poly = poly->next;
    poly->next = NULL;
```



```
int main()
  node* head1 = NULL;
  node* head2 = NULL;
  node* head = (node*)malloc(sizeof(node));
  int ch;
    do
    get_input(&head1);
    printf("\nEnter more node in poly1? (1,0) :");
    scanf("%d",&ch);
  }while(ch);
    do
    get_input(&head2);
    printf("\nEnter more node in poly2? (1,0) :");
    scanf("%d",&ch);
  }while(ch);
    add(head,head1,head2);
  display(head1);
  display(head2);
  display(head);
    return 0;
```

