

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (PO), Coimbatore - 641 107 Accredited by NAAC-UGC with 'A' Grade Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY COURSE NAME: 19IT301 COMPUTER ORGANIZATION

AND ARCHITECTURE

II YEAR/ III SEM

Unit 2 : ARITHMETIC OPERATIONS

Topic 1: Addition and subtraction of signed

numbers

SNSCE / IT / III Sem / Vaishnavee AP-IT

9/30/2023

Binary, signed interger representation

b 3	, b ₂	b ₁	b ₀	Sign and Magnitude	2's Complement
0	1	1	1	+7	+7
0	1	1	0	+6	+6
0	1	0	1	+5	+5
0	1	0	0	+4	+4
0	0	1	1	+3	+3
0	0	1	0	+2	+2
0	0	0	1	+1	+1
0	0	0	0	+0	+0
1	0	0	0	-0	-8
1	0	0	1	-1	-7
1	0	1	0	-2	-6
1	0	1	1	-3	-5
1	1	0	0	-4	-4
1	1	0	1	-5	-3
1	1	1	0	-6	-2
1	1	1	1	-7	-1

9/30/2023

SNSCE / IT/ V Sem/V VaishnaveeAP-IT

Logic specification for a stage of binary addition

At the *i*th stage: Input: c_i is the carry-in Output: s_i is the sum c_{i+1} carry-out to $(i+1)^{st}$ state

У	Carry-in
0	0
0	1
1	0
1	1
0	0
0	1
1	0
1	1
	<i>y</i> ^r 0 0 1 1 0 0 1 1 1

$$S = X_{i} Y_{i} G + X_{i} Y_{i} G + X_{i} G$$

$$G_{i+1} = Y_{i} G_{i} + X_{i} G + X_{i} G$$

Example:

$$\frac{X}{Z} = \frac{7}{13} = \frac{0}{11} = \frac{1}{11}$$

SNSCE / IT / V Sem / V Vaishnavee AP-IT

SNSCE / IT / V Sem / V Vaishnavee AP-IT

9/30/2023

- Cascade n-full adder (FA) blocks to form a n-bit adder.
- Carries propagate or ripple through this cascade, n-bit ripple carry adder. \bullet

SNSCE / IT / V Sem / V Vaishnavee AP-IT

- Carry-in c_0 into the LSB position provides a convenient way to perform \bullet subtraction
- Each n-bit adder forms a block, so this is cascading of blocks. ullet
- Carries ripple or propagate through blocks, Blocked Ripple Carry Adder ullet

SNSCE / IT / V Sem / V Vaishnavee AP-IT

Binary addition- subtraction logic network

- X Y is equivalent to adding 2's complement of Y to X
- 2's complement is equivalent to 1's complement + 1

•
$$X - Y = X + Y + 1$$

SNSCE / IT / V Sem / V Vaishnavee AP-IT

9/30/2023

Detecting overflows

- Overflows can only occur when the sign of the two operands is the same.
- Overflow occurs if the sign of the result is different from the sign of the \bullet operands.
- Circuit to detect overflow can be implemented by the following logic expressions:

$$Overflow = x_{n-1}y_{n-1}\overline{s}_{n-1} + \overline{x}_{n-1}$$

 $Overflow = c_n \oplus c_{n-1}$

SNSCE / IT / V Sem / V Vaishnavee AP-IT

9/30/2023

 $\overline{y}_{n-1}S_{n-1}$

Thank You

<mark>9/30/20</mark>23

SNSCE / IT/ V Sem/V VaishnaveeAP-IT

