SNS COLLEGE OF ENGINEERING

Kurumbapalayam (PO), Coimbatore - 641107
Accredited by NAAC-UGC with 'A' Grade
Approved by AICTE, Recognized by UGC \& Affiliated to Anna University, Chennai
DEPARTMENT OF INFORMATION TECHNOLOGY
COURSE NAME: 19IT301 COMPUTER ORGANIZATION AND ARCHITECTURE

II YEAR/ III SEM

Unit 1 : BASIC STRUCTURE OF COMPUTERS Topic 4:

Memory locations and addresses -Memory
Operations

Memory locations and addresses

- Memory consists of many millions of storage cells, each of which can store 1 bit.
- Data is usually accessed in n-bit groups. n is called word length.

Example of encoded information in a 32-bit word

32-bit word length example

Sign bit: $b_{31}=0$ for positive numbers
$b_{31}=1$ for negative numbers
(a) A signed integer

$\underbrace{8 \text { bits }}_{$| ASCII |
| :---: |
| character |$} \underbrace{8 \text { bits }}_{$| ASCII |
| :---: |
| character |$} \quad \underbrace{8 \text { bits }}_{$| ASCII |
| :---: |
| character |$} \underbrace{8 \text { bits }}_{$| ASCII |
| :---: |
| character |$}$

(b) Four characters

Memory Address

- To retrieve information from memory, either for one word or one byte (8-bit), addresses for each location are needed.
- A k-bit address memory has 2^{k} memory locations, namely $0-2^{\mathrm{k}}-1$, called memory space.
- 24-bit memory: $2^{24}=16,777,216=16 \mathrm{M}\left(1 \mathrm{M}=2^{20}\right)$
- 32-bit memory: $2^{32}=4 \mathrm{G}\left(1 \mathrm{G}=2^{30}\right)$
- 1 K (kilo)= 2^{10}
- 1 T (tera) $=2^{40}$

Byte Addressability

- It is impractical to assign distinct addresses to individual bit locations in the memory.
- The most practical assignment is to have successive addresses refer to successive byte locations in the memory - byte-addressable memory.
- Byte locations have addresses $0,1,2, \ldots$ If word length is 32 bits, they successive words are located at addresses $0,4,8, \ldots$

Big-Endian and Little-Endian Assignments

2 ways of assigning byte addresses:
Big-Endian: lower byte addresses are used for the most significant bytes of the word
Little-Endian: opposite ordering. lower byte addresses are used for the less significant bytes of the word

(a) Big-endian assignment
(b) Little-endian assignment

Byte and word addressing.

Word alignment

- Words are said to be aligned in memory if they begin at a byte addr. that is a multiple of the number of bytes in a word.
\checkmark 16-bit word: word addresses: $0,2,4, \ldots$.
\checkmark 32-bit word: word addresses: $0,4,8, \ldots$.
\checkmark 64-bit word: word addresses: $0,8,16, \ldots$.
- Access numbers using word address, individual characters accessed using byte address, and character strings of variable length by indicating 'end of string'

Memory Operations

- Load (or Read or Fetch)
- Copy the content. The memory content doesn't change.
- Address - Load
- Registers can be used
- Store (or Write)
- Overwrite the content in memory
- Address and Data - Store
- Registers can be used

Assessment

1. The smallest entity of memory is called
a) Cell
b) Block
c) Instance
d) Unit
2. The collection of the above mentioned entities where data is stored is called \qquad
a) Block
b) Set
c) Word
d) Byte

Assessment

3. An 24 bit address generates an address space of \qquad locations.
a) 1024
b) 4096
c) 248
d) $16,777,216$
4. If a system is 64 bit machine, then the length of each word will be
a) 4 bytes
b) 8 bytes
c) 16 bytes
d) 12 bytes

Assessment

5. When using the Big Endian assignment to store a number, the sign bit of the number is stored in \qquad
a) The higher order byte of the word
b) The lower order byte of the word
c) Can't say
d) None of the mentioned

Thank You

