

Chapter: <u>Special Electrical Machines: Permanent Magnet</u> <u>Brushless D.C. Motors</u>

The basic torque emf equations of the brushless dc motor are quite simple and resemble those of the dc commutator motor.

EMF EQUATION OF BLPM SQW DC MOTORS

The basic torque emf equations of the brushless dc motor are quite simple and resemble those of the dc commutator motor.

The co-ordinate axis have been chosen so that the center of a north pole of the magnetic is aligned with the x-axis at $\Theta = 0$.the stator has 12 slots and a three phasing winding. Thus there are two slots per pole per phase.

V Consider a BLPM SQW DC MOTOR

Let 'p'be the number of poles (PM)

'B_a' be the flux density in the air gap in wb/m².

B_k is assumed to be constant over the entire pole pitch in the air gap (180th pole arc)

'r' be the radius of the airgap in m.

'I' be the length of the armature in m.

'Tc' be the number of turns per coil.

 ω_m be the uniform angular velocity of the rotor in mechanical rad/sec.

 ω_m =2 π N/60 where N is the speed in rpm.

Flux density distribution in the air gap is as shown in fig 4.14.At t=0(it is assumed that the axis of the coil coincides with the axis of the permanent magnet at time t=0).

Let at ω_{mt} =0,the centre of N-pole magnet is aligned with x-axis.

At ω_{mt} =0,x-axis is along PM axis.

Therefore flux enclosed by the coli is

 $\Lambda_{\text{max}} = (B_0 \times 2\pi r/p \times I)T_c \omega b - T$ (4.2)

Fig 4.14 Magnetic Flux Density around the Air gap.

Fig 4.15 Motor Showing two Coils of One Phase.

Let the rotor rotating in ccw direction and when ω_{mt} = π /2, the flux enclosed by the coil Φ , Therefore λ =0.

The flux linkages of the coil vary with θ variation of the flux linkage is as shown above.

The flux linkages of the coil changes from $B_q r T C \pi / p$ at $\omega_{mt} = 0$ (i.e) t = 0 to θ at $t = \pi / p \omega_m$.

Change of flux linkage of the coil (i.e) Δλ is

 $\Delta \lambda / \Delta t$ =Final flux linkage – Initial flux linkage/time.

=0- $(2B_qrITc\pi/p)/(\pi/p\omega_m)$

$$= -(2B_g r | Tc\omega_m)$$
(4.3)

The emf induced in the coil $e_c = - d\lambda/dt$

$$e_c = 2B_q riTc\omega_m$$
(4.4)

Distribution of ec with respect to t is shown in fig 4.16

Consider two coils a1A1 and a2A2 as shown in fig 5.15.Coil a2A2 is adjacent to a1A1 is displaced from a1A1 by an angle 30^{1j} (i.e.) slot angle Υ .
The magnitude of emf induced in the coil a1A1
$e_{c2} = B_g r i T c \omega_m \text{ volts}$ (4.6)
The magnitude of emf induced in the coil a2A2
$e_{c2} = B_g r I T c \omega_m \text{ volts}$ (4.7)
Its emf waveform is also rectangular but displaced by the emf of waveform of coil $e_{\text{c}1}$ by slot angle Υ .
If the two coils are connected in series, the total phase voltage is the sum of the two separate coil voltages.
$e_{c1} + e_{c2} = 2B_g r I T c \omega_m$ (4.8)
Let nc be the number of coils that are connected in series per phase n_cT_c = T_{ph} be the
number of turns/phase.
$e_{ph} = n_c \left[2B_g r Tc\omega_m \right]$ (4.9)
e _{ph} = 2B _g rlTphωm volts(4.10)