

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE NAME : 19EE303- DC MACHINES & TRANSFORMERS (Theory Integrated Practical)

II YEAR /III SEMESTER EEE

Unit 1 – DC Generator

Types of DC Generator

TYPES OF DC GENERATOR

2/8

SEPERATELY EXCITED DC GENERATOR

 I_f – Field current, I_a – Armature current, I_L – Load current

 R_a – Armature winding resistance

Let V_{br} be the voltage drop at the brush contacts. Armature current is given by, $I_a = I_L$

Applying Kirchoff's Voltage Law to the armature circuit, $E_g - I_a R_a - V - V_{br} = 0$

Thus, the generated Emf equation $E_g = I_a R_a + V + V_{br}$

Power developed in the DC generator = $E_g I_a$

Power delivered to the load = VI_a

SHUNT WOUND DC GENERATOR

 I_{sh} – Shunt field current, I_a – Armature current, I_L – Load current

 R_a – Armature resistance, V – terminal voltage, V_{br} – Brush contact drop

Armature current is given by, $I_a = I_L + I_{sh}$

Shunt field current $I_{sh} = V/R_{sh}$, Where R_{sh} – shunt field resistance

Terminal voltage equation is given by, $V = E_g - I_a R_a - V_{br}$

Power developed in the DC generator = $E_g I_a$

Power delivered to the load = $V I_L$

I.

SERIES WOUND DC GENERATOR

 I_{se} – SERIES field current, I_a – Armature current, I_L – Load current

 R_a – Armature resistance, V – terminal voltage,

 V_{br} – Brush contact drop

Armature current is given by, $I_a = I_{se} = I_L$

Terminal voltage equation is given by, $V = E_g - I_a R_a - I_a R_{se} - V_{br}$

Power developed in the DC generator = $E_g I_a$ Power delivered to the load = $V I_L$

LONG SHUNT COMPOUND DC GENERATOR

 I_{sh} – Shunt field current, I_{se} – series field current, I_a – Armature current, I_L – Load current,

 R_a – Armature resistance, V – terminal voltage,

 V_{br} – Brush contact drop

Armature current is given by, $I_a = I_{se} = I_L + I_{sh}$

Shunt field current $I_{sh} = V/R_{sh}$, Where R_{sh} – shunt field resistance

Terminal voltage equation is given by, $V = E_g - I_a R_a - I_a R_{se} - V_{br}$

Power developed in the DC generator = $E_a I_a$

Power delivered to the load = VI_L

SHORT SHUNT COMPOUND DC GENERATOR

 R_a – Armature resistance, V – terminal voltage, V_{br} – Brush contact drop

Armature current is given by, $I_a = I_L + I_{sh}$ where $I_L = I_{se}$

Terminal voltage equation is given by, $V = E_g - I_a R_a - I_{se} R_{se} - V_{br}$

Generated Emf equation, $E_g = V + I_a R_a + I_{se} R_{se} + V_{br}$ Voltage drop across shunt field winding = $I_{sh} R_{sh}$ Shunt field current $I_{sh} = (E_g - I_a R_a - V_{br})/R_{sh}$, Where R_{sh} – shunt field resistance

By substituting the value of E_g in the above equation, we get shunt field current $I_{sh} = (V + I_{se} R_{se})/R_{sh}$

Power developed in the DC generator = $E_g I_a$

Power delivered to the load = $V I_L$

REFERENCES

- 1. Nagrath I. J and Kothari D. P. "Electric Machines", Fourth Edition, Tata McGraw Hill Publishing Company Ltd, 2016. (UNIT I-V)
- 2. K.Murugesh Kumar, "D.C Machines and Transformers" Vikas publishing house private limited ,New Delhi. 2014. (UNIT I-V)
- 3. P. C. Sen., "Principles of Electrical Machines and Power Electronics", John Wiley & Sons, 1997.
- 4. Syed A. Nasar, "Electric Machines and Power Systems: Volume I", Mcgraw-Hill College; International Edition, January 1995.
- 5. Deshpande M. V., "Electrical Machines" PHI Learning Pvt. Ltd., New Delhi, 2018.
- 6. P.S. Bimbhra, "Electrical Machinery", Khanna Publishers, 2013.

THANK YOU

