

Transformation

- In computer graphics, transformation refers to the process of changing the position, size, or orientation of an object.
- It is used to manipulate
 and animate objects in a virtual environment.

TRANSLATION

- Translation is a process of moving an object from one position to another in a two dimensional plane.
- To translate a point from $P\left(x_{0}, y_{0}\right)$ to $Q\left(x_{1}, y_{1}\right)$, then we have to add Translation coordinates (Tx, Ty) with original coordinates.

Translation equation $\mathrm{x} 1=\mathrm{x}+\mathrm{Tx}$
 $$
\mathrm{y} 1=\mathrm{y}+\mathrm{Ty}
$$

(The $t r$ a nslat ion pa ir (Ix , Ty)is ca lled as shift vector)

Problem

Given a circle C with radius 10 and center coordinates (1, 4). Apply the translation with distance 5 towards X axis and 1 towards Y axis. Obtain the new coordinates of C without changing its radius.

Solution-

Old center coordinates of $C=($ Xold, Yold $)=(1,4)$

- Translation vector $=($ Tx, Ty $)=(5,1)$

Let the new center coordinates of C = (Xnew, Ynew).
Applying the translation equations, we have-
. Xnew $=$ Xold + Tx $=1+5=6$
. Ynew $=$ Yold + Ty $=4+1=5$

Thus, New center coordinates of $C=(6,5)$.

In matrix form, the new center coordinates of C after translation may be obtained as-

Thus, New center coordinates of $C=(6,5)$.

ROTATION

- 2D Rotation is a process of rotating an object with respect to an angle in a twodimensional plane.
- Let

Initial coordinates of the object $\mathbf{O}=($ Xold, Yold) Initial angle of the object O with respect to origin $=\Phi$ Rot at ion angle = $\boldsymbol{\theta}$
New coordinates of the object O after rotation = (Xnew, Ynew)

This rotation is achieved by using the following rotation equations-

$$
\text { Xnew }=\text { Xold } x \cos \theta-Y o l d x \sin \theta
$$

$$
\text { Ynew }=X \text { old } x \sin \theta+Y o l d x \cos \theta
$$

In Matrix form, the above rotation equations may be represented as-

Problem:

Given a line segment with starting point as $(0,0)$ and ending point as $(4,4)$. Apply 30 degree rotation anticlockwise direction on the line segment and find out the new coordinates of the line

Solution :

We rotate a straight line by its end points with the same angle. Then, we re-draw a line between the new end points.
Old ending coordinates of the line $=($ Xold, Yold $)=(4,4)$
Rotation angle $=\boldsymbol{\theta}=30$ -
Let new ending coordinates of the line after rotation = (Xnew, Ynew).

Ynew

Xnew

$$
=2 \sqrt{ } 3-2
$$

$$
=2(\sqrt{ } 3-1)
$$

$$
=2(1.73-1)
$$

$$
\begin{aligned}
& =X \text { old } x \sin \theta+Y o l d x \cos \theta \\
& =4 \times \sin 30 \div+4 \times \cos 30 \varrho \\
& =4 \times(1 / 2)+4 \times(\sqrt{ } 3 / 2) \\
& =2+2 \sqrt{ } 3 \\
& =2(1+\sqrt{ } 3) \\
& =2(1+1.73) \\
& =5.46
\end{aligned}
$$

Thus, New ending coordinates of the line after rotation $=(1.46,5.46)$.

In matrix form, the new ending coordinates of the line after rotation may be obtained as

$$
\begin{aligned}
& {\left[\begin{array}{l}
X_{\text {new }} \\
Y_{\text {new }}
\end{array}\right]=\left[\begin{array}{ll}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \times\left[\begin{array}{l}
X_{\text {old }} \\
Y_{\text {old }}
\end{array}\right]} \\
& {\left[\begin{array}{l}
X_{\text {new }} \\
Y_{\text {new }}
\end{array}\right]=\left[\begin{array}{ll}
\cos 30 & -\sin 30 \\
\sin 30 & \cos 30
\end{array}\right] \times\left[\begin{array}{l}
4 \\
4
\end{array}\right]} \\
& {\left[\begin{array}{l}
X_{\text {new }} \\
Y_{\text {new }}
\end{array}\right]=\left[\begin{array}{l}
4 \times \cos 30-4 \times \sin 30 \\
4 \times \sin 30+4 \times \cos 30
\end{array}\right]} \\
& {\left[\begin{array}{l}
X_{\text {new }} \\
Y_{\text {new }}
\end{array}\right]=\left[\begin{array}{l}
4 \times \cos 30-4 \times \sin 30 \\
4 \times \sin 30+4 \times \cos 30
\end{array}\right]} \\
& {\left[\begin{array}{l}
X_{\text {new }} \\
Y_{\text {new }}
\end{array}\right]=\left[\begin{array}{l}
1.46 \\
5.46
\end{array}\right]}
\end{aligned}
$$

\square
\square
 x

SCALING

- scaling is a process of modifying or altering the size of objects.
- Scaling may be used to increase or reduce the size of object.
- If scaling factor >1, then the object size is increased.
- If scaling factor <1, then the object size is reduced.

This scaling is achieved by using the following scaling equations-

- Xnew = Xold x Sx
- Ynew = Yold x Sy

Initial coordinates of the object $0=($ Xold, Yold)
Scaling factor for X -axis = Sx
Scaling factor for Y -axis = Sy
New coordinates of the object 0 after scaling = (Xnew, Ynew)

In Matrix form, the above scaling equations may be represented as-

$$
\begin{aligned}
{\left[\begin{array}{l}
\mathrm{X}_{\text {new }} \\
\mathrm{Y}_{\text {new }}
\end{array}\right]=} & {\left[\begin{array}{cc}
\mathrm{S}_{\mathrm{x}} & 0 \\
0 & \mathrm{~S}_{\mathrm{y}}
\end{array}\right] \times\left[\begin{array}{l}
\mathrm{X}_{\text {old }} \\
\mathrm{Y}_{\text {old }}
\end{array}\right] } \\
& \text { Scaling Matrix }
\end{aligned}
$$

Problem:

Given a square object with coordinate points $A(0,3), B(3,3), C(3,0), D(0,0)$. Apply the scaling parameter 2 towards X axis and 3 towards Y axis and obtain the new coordinates of the object Solution-

Given-
Old corner coordinates of the square $=\mathrm{A}(0,3), \mathrm{B}(3,3), \mathrm{C}(3,0), \mathrm{D}(0,0)$
Scaling factor along X axis = 2
Scaling factor along Y axis = $\mathbf{3}$
For Coordinates A(0,3)
Let the new coordinates of corner A after scaling $=\left(\mathrm{X}_{\text {new }}, \mathrm{Y}_{\text {new }}\right)$.
Applying the scaling equations, we have-
$X_{\text {new }}=X_{\text {old }} \times S_{\mathrm{x}}=0 \times 2=0$
$Y_{\text {new }}=Y_{\text {old }} \times S_{y}=3 \times 3=9$
Thus, New coordinates of corner A after scaling =(0,9).

For Coordinates B(3, 3)

Let the new coordinates of corner B after scaling $=\left(X_{\text {new }}, Y_{\text {new }}\right)$. Applying the scaling equations, we have-
$X_{\text {new }}=X_{\text {old }} \times S_{x}=3 \times 2=6$
$Y_{\text {new }}=Y_{\text {old }} \times S_{y}=3 \times 3=9$
Thus, New coordinates of corner B after scaling = $(6,9)$.

For Coordinates C(3, 0)

Let the new coordinates of corner C after scaling $=\left(\mathrm{X}_{\text {new }}, \mathrm{Y}_{\text {new }}\right)$. Applying the scaling equations, we have-
$X_{\text {new }}=X_{\text {old }} \times S_{x}=3 \times 2=6$
$Y_{\text {new }}=Y_{\text {old }} \times S_{y}=0 \times 3=0$
Thus, New coordinates of corner C after scaling $=(6,0)$.

For Coordinates D(0,0)

Let the new coordinates of corner D after scaling $=\left(X_{\text {new }}, Y_{\text {new }}\right)$.

Applying the scaling equations, we have-
$X_{\text {new }}=X_{\text {old }} \times S_{x}=0 \times 2=0$
$Y_{\text {new }}=Y_{\text {old }} \times S_{y}=0 \times 3=0$

Thus, New coordinates of corner D after scaling $=(0,0)$.

Thus, New coordinates of the square after scaling $=A(0,9), B(6,9), C(6,0), D(0,0)$.

