SNS COLLEGE OF ENGINEERING

KURUMBAPALAYAM(PO), COIMBATORE - 641107 ACCREDITED BY NAAC-UGC WITH 'A' GRADE
APPROVED BY AICTE, RECOGNIZED BY UGC \& AFFILIATED TO ANNA UNIVERSITY, CHENNAI

Department of Artificial intelligence and data science

Course Name - COMPUTER GRAPHICS

III Year / V Semester
Unit 1 - CLIPPING ALGORITHMS FOR LINES, REGULAR POLYGONS, CIRCLES AND ARCS

Topic :Graphics Input Primitives and Devices

CLIPPING

- Clipping is a process of dividing an object into visible and invisible portions and displaying the visible portion and discarding the invisible portion.
- Types of Clipping:

Generally we have Clipping algorithm for the following primitive type:

* Point Clipping
* Line Clipping
* Area Clipping (Polygon)
* Curve Clipping
\%. Text

COHEN SUTHERLAND LINE CLIPPING ALGORITHM

\square In this algorithm, we will divide the view pane into nine equal segments that only serve the viewport.
\square Now, we will represent the top, bottom, left, and right corner of the window with 4 bits. This 4bit can be described with the following point that:
\square If an object lies within any particular corner position, that corner value will be 1 , else it will be 0 .
\square The allocation of bits depends on "TBRL" (Top, Bottom, Right, Left) rule.

COHEN-SUTHERLAND LINE CLIPING ALGORITHM

$\begin{gathered} 1010 \\ \text { region } 1 \end{gathered}$	$\begin{gathered} 1000 \\ \text { region } 2 \end{gathered}$	$\begin{gathered} 1001 \\ \text { region } 3 \end{gathered}$
$\begin{gathered} 0010 \\ \text { region } 8 \end{gathered}$	$\begin{gathered} 0000 \\ \text { Window } \end{gathered}$	$\begin{gathered} 0001 \\ \text { region } 4 \end{gathered}$
$\begin{gathered} 0110 \\ \text { region } 8 \end{gathered}$	$\begin{gathered} 0100 \\ \text { region } 6 \end{gathered}$	0101 region 5

Wits respect to a cocindow, the line car be
c) perfertly inside (L_{1})
(2) perferily oubscide $\left(L_{2}\right)$
8), parcially ciuside (L_{3})

1) enar pocinls outside Lirse regment insucle $\}(44)$
if the line es pertactly inside $\left(L_{1}\right) \rightarrow$ accept the line parfertly outtsxde $\left(L_{2}\right) \rightarrow$ rrject the line.
crosers zoundow bourdayy $\left(L_{3}, L_{4}\right)$

$$
\rightarrow \text { clep the }
$$ lince.

Encode tht endpoints of the line
\square If the two endpoints have the code $0000 \&$ AND is 0000 the line is completely inside .So accept the line
If the two endpoints are non zero \& their AND is non zero the line is completely outside .So reject the line

If the two endpoints are non zero \& their AND is 0000 the line is partially inside. So clip the line.

* Clipping needs the intersection points(s)
* If a point is outside any window boundary find the intersection point on the window boundary

1) End points L1 0000
0000
-----------AND
0000
Completely inside accept the line
2) End points L2

0100
0110
-----------AND
0100

Completely outside, so reject the line

End points L3

 00000010
-----------AND
0000
partially inside , need clipping, find intersection point

End points L4
0001
0100
-----------AND
0000
partially inside , need clipping, find intersection point

New points
0000
0000
-----------AND
0000
Completely inside, so accept the line

New points
0001
0000
-----------AND
0000
partially inside, need clipping, find intersection point

New points
0000
0000
------------AND
0000
Completely inside, so accept the line

POLYGON CLIPPING

Sutherland Hodgeman polygon clipping algorithm is used for polygon clipping. In this algorithm, all the vertices of the polygon are clipped against each edge of the clipping window.
\square
Polygon clipping is the process of cutting off parts of a polygon that lie outside a given boundaryThe polygon clipping algorithm deals with four different clipping cases.

* Left clip
* Right clip
- Top clip
* Bottom clip

Case 1:
if moving from outside to inside
$>$ Reject the start point and save the intersection point on wind boundary and vertex

Case 2:
if moving from inside to inside
> Save the second vertex

Case 3:
if moving from inside to outside
$>$ Save intersection point and reject the end point

Case 4:
if moving from ouside to outside
> Save none

CLIPPING ALGORITHMS FOR CIRCLES AND ARCS

Clipping Circles

- Accept/Reject test
- Does bounding box of the circle intersect with clipping box?
- If yes, condition pixel
write on clipping box inside/outside tes
Also we can test Circle points by Point Clipping .
-the point $P=(x, y)$ is display in clipping Boundry if

$$
x_{\text {mini }} \leq x \leq x_{m a x} \text { and } y_{\text {mrina }} \leq y \leq y_{\text {max }}
$$

CURVE CLIPPING

Curve clipping procedures will involve non-linear equations (so requires more processing than for objects with linear boundaries In general, methods depend on how characters are represented). Clipping curves requires more work

For circles we must find the two intersection points on the window boundary

THANK YOU

