Line Drawing Algorithm

$>$ The Line drawing algorithm is a graphical algorithm which is used to represent the line segment on discrete graphical media, i.e., printer and pixel-based media.
$>$ A line contains two points. The point is an important element of a line.

properties of a Line Drawing Algorithm

- An algorithm should be precise: Each step of the algorithm must be adequately defined.
- Finiteness: An algorithm must contain finiteness. It means the algorithm stops after the execution of all steps.
- Easy to understand: An algorithm must help learners to understand the solution in a more natural way.
- Correctness: An algorithm must be in the correct manner.
- Effectiveness: The steps of an algorithm must be valid and efficient.
- Uniqueness: All steps of an algorithm should be clearly and uniquely defined, and the result should be based on the given input.
- Input: A good algorithm must accept at least one or more input.
- Output: An algorithm must generate at least one output

The formula for a slope line interception is:
$Y=m x+b$

In this formula, m is the slope line and b is the line's intercept of y. Two endpoints for the line segment are supplied in coordinates ($\mathrm{x} 1, \mathrm{y} 1$) and ($\mathrm{x} 2, \mathrm{y} 2$).

Types of Line Drawing Algorithm

- DDA (Digital Differential Analyzer) Line Drawing Algorithm
- Bresenham's Line Drawing Algorithm

DDA (Digital Differential Analyzer)

Digital Differential Analyzer algorithm is also known as an incremental method of scan conversion.

Algorithm of Digital Differential Analyzer (DDA) Line Drawing

Step 1: Start.
Step 2: We consider Starting point as (x1, y1), and ending point ($\mathrm{x} 2, \mathrm{y} 2$).
Step 3: Now, we have to calculate $\boldsymbol{\Delta} x$ and $\boldsymbol{\Delta} y$.
Ax $=\mathrm{x} 2-\mathrm{x} 1$
$\boldsymbol{\Delta} y=y 2-y 1$

$$
\mathrm{m}=\boldsymbol{\Delta} \mathrm{y} / \boldsymbol{\Delta} \mathrm{x}
$$

Step 4: Now, we calculate three cases.
Case 1: If $\mathrm{m}<1$

$$
\begin{aligned}
& x_{k+1}=x_{k}+1 \\
& y_{k+1}=y_{k}+m
\end{aligned}
$$

Case 2: If m>1

$$
\begin{aligned}
& y_{k+1}=y_{k}+1 \\
& x_{k+1}=x_{k}+1 / m
\end{aligned}
$$

Case 3: If $\mathrm{m}=1$

$$
\begin{aligned}
& x_{k+1}=x_{k}+1 \\
& y_{k+1}=y_{k}+1
\end{aligned}
$$

Step 5: We will repeat step 4 until we find the ending point of the line.
Step 6: Stop
Example: A line has a starting point $(1,7)$ and ending point $(11,17)$. Apply the Digital Differential Analyzer algorithm to plot a line.

Step 1: Consider Starting Point $=\left(\mathbf{x}_{1}, \mathrm{y}_{1}\right)=(\mathbf{1}, \mathbf{7})$
Ending Point $=\left(\mathbf{x}_{2}, \mathbf{y}_{\mathbf{2}}\right)=(\mathbf{1 1 , 1 7})$

Step 2: calculate m

$\boldsymbol{\Delta} \mathrm{x}=\mathrm{x} 2-\mathrm{x} 1=11-1=10$
$\boldsymbol{\Delta} y=\mathrm{y} 2-\mathrm{y} 1=17-7=10$

$$
\mathrm{m}=\boldsymbol{\Delta} \mathrm{y} / \boldsymbol{\Delta} \mathrm{x}=10 / 10=1
$$

Step 3: We get $m=1$, Third case is satisfied

$\mathbf{x}_{\text {k }}$	$\mathbf{y k}_{\mathrm{k}}$	$\mathbf{x}_{\mathbf{k}+1}$	$\mathrm{y}_{\mathbf{k}+1}$	($\mathbf{x}_{\mathrm{k}+1}, \mathbf{y}_{\mathrm{k}+1}$)
1	7	2	8	$(2,8)$
		3	9	$(3,9)$
		4	10	$(4,10)$
		5	11	$(5,11)$
		6	12	$(6,12)$
		7	13	$(7,13)$
		8	14	$(8,14)$
		9	15	$(9,15)$
		10	16	$(10,16)$
		11	17	$(11,17)$

Step 4: We will repeat step 3 until we get the endpoints of the line.
Step 5: Stop.
The coordinates of drawn line are

$$
\begin{aligned}
& P 1=(2,8) \\
& P 2=(3,9) \\
& P 3=(4,10) \\
& P 4=(5,11) \\
& P 5=(6,12) \\
& P 6=(7,13) \\
& P 7=(8,14) \\
& P 8=(9,15) \\
& P 9=(10,16) \\
& P 10=(11,17
\end{aligned}
$$

Bresenham's Line Drawing Algorithm

$>$ This algorithm was introduced by "Jack Elton Bresenham" in 1962.
$>$ This algorithm helps us to perform scan conversion of a line.
$>$ It is a powerful, useful, and accurate method.
$>$ We use incremental integer calculations to draw a line. The integer calculations include addition, subtraction, and multiplication.

Algorithm of Bresenham's Line Drawing Algorithm

Step 1: Start.
Step 2: Now, we consider Starting point as ($\mathrm{x} 1, \mathrm{y} 1$) and ending point ($\mathrm{x} 2, \mathrm{y} 2$).
Step 3: Now, we have to calculate $\boldsymbol{\Delta} \mathrm{x}$ and $\boldsymbol{\Delta} \mathrm{y}$.
A $\mathrm{x}=\mathrm{x} 2-\mathrm{x} 1$
$\Delta y=y 2-y 1$
$\mathrm{m}=\boldsymbol{\Delta} \mathrm{y} / \boldsymbol{\Delta} \mathrm{x}$
Step 4: Now, we will calculate the decision parameter pk with following formula.

$$
\mathrm{pk}=2 \boldsymbol{\Delta} \mathrm{y}-\boldsymbol{\Delta} \mathrm{x}
$$

Step 5: The initial coordinates of the line are ($x k, y k$), and the next coordinates are ($x k+1, y k+1$).
Now, we are going to calculate two cases for decision parameter pk
Case 1: If $\mathrm{pk}<0$ Then
$\mathrm{pk}+1=\mathrm{pk}+2 \mathbf{\Delta} \mathrm{y}$
$x k+1=x k+1$
$y k+1=y k$
Case 2: If $\mathrm{pk}>=0$ Then
$\mathrm{pk}+1=\mathrm{pk}+2 \boldsymbol{\Delta} \mathrm{y}-2 \boldsymbol{\Delta} \mathrm{x}$
$x k+1=x k+1$
$y k+1=y k+1$

Step 6: We will repeat step 5 until we found the ending point of the line and the total number of iterations $=\boldsymbol{\Delta} \mathrm{x}-1$.

Step 7: Stop
Example: A line has a starting point $(9,18)$ and ending point $(14,22)$. Apply the Bresenham's Line Drawing algorithm to plot a line.

Step 1:Consider, Starting Point $=(x 1, y 1)=(9,18)$

$$
\text { Ending Point }=(x 2, y 2)=(14,22)
$$

Step 2: First, we calculate $\boldsymbol{\Delta} \mathrm{x}, \boldsymbol{\Delta} \mathrm{y}$.
$\Delta x=x 2-x 1=14-9=5$
$\Delta y=y 2-y 1=22-18=4$
Step 3: Calculate the decision parameter

$$
\text { (pk) pk }=2 \boldsymbol{\Delta} y-\boldsymbol{\Delta} x=2 x 4-5=3
$$

The value of $\mathrm{pk}=3$
Step 3: Now, we will check both the cases.
If pk $>=0$ Then Case 2 is satisfied.
Thus pk+1 $=\mathrm{pk}+2 \boldsymbol{\Delta} \mathrm{y}-2 \boldsymbol{\Delta} \mathrm{x}=3+(2 \times 4)-(2 \times 5)=1$
$x k+1=x k+1=9+1=10$
$y k+1=y k+1=18+1=19$
Step 4: Now move to next step. We will calculate the coordinates until we reach the end point of the line.

Step 5:Stop

$\mathbf{p}_{\mathbf{k}}$	$\mathbf{p}_{\mathbf{k}+1}$		$\mathbf{x}_{\mathbf{k}+1}$
		9	$\mathbf{y}_{\mathbf{k}+1}$
3	1	10	19
1	-1	11	20
-1	7	12	20
7	5	13	21
5	3	14	22

The Coordinates of drawn lines are
$P 1=(9,18)$
$P 2=(10,19)$
$P 3=(11,20)$
$P 4=(12,20)$
$P 5=(13,21)$
$P 6=(14,22)$

