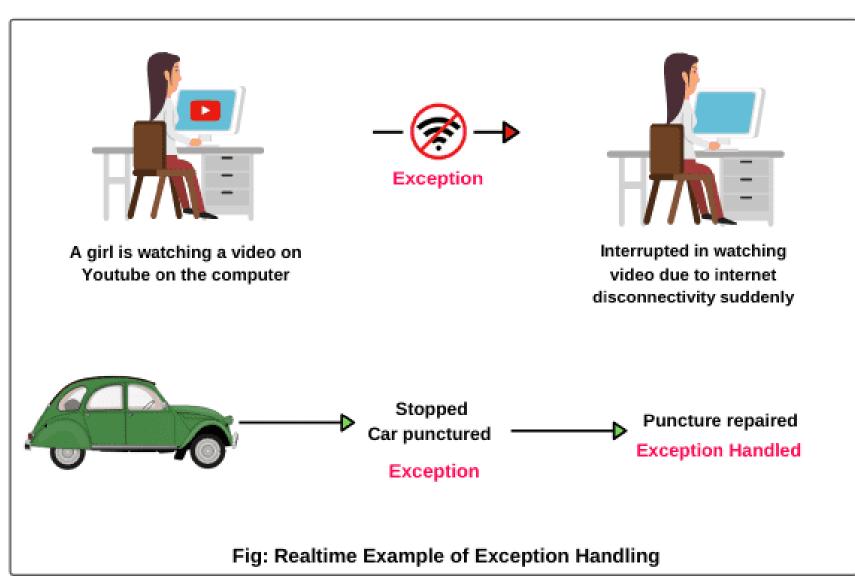


Kurumbapalayam(Po), Coimbatore - 641 107 Accredited by NAAC-UGC with 'A' Grade Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

Department of Information Technology

19CS204 OBJECT ORIENTED PROGRAMMING

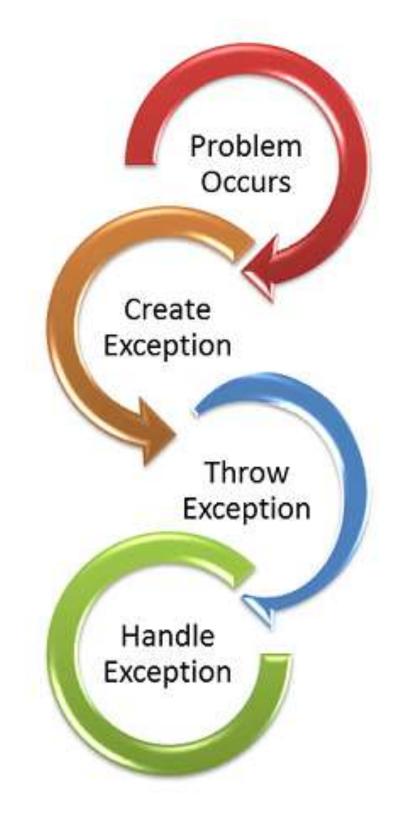
I YEAR /II SEMESTER


Topic – Exception Handling

- An exception is **an abnormal condition** that arises in a code sequence at run time.
- In other words, an exception is a runtime error.
- In computer languages that do not support exception handling, errors must be checked and handled manually—typically through the use of error codes, and so on.
- This approach is as cumbersome as it is troublesome.
- Java's exception handling avoids these problems and, in the process, brings run-time error management into the object-oriented world.

- A Java exception is an object that describes an exceptional (that is, error) condition that has occurred in a piece of code.
- When an exceptional condition arises, an **object representing that exception is created and thrown in the method that caused the error.**
- That method may choose to handle the exception itself, or pass it on. Either way, at some point, the exception is caught and processed.
- Exceptions can be generated by the Java run-time system, or they can be manually generated by your code.
- Exceptions thrown by Java relate to fundamental errors that violate the rules of the Java language or the constraints of the Java execution environment.
- Manually generated exceptions are typically used to report some error condition to the caller of a method.

Java exception handling is managed via five keywords:


- try, catch, throw, throws, and finally.
- Program statements that you want to monitor for exceptions are contained within a try block. If an exception occurs within the try block, it is thrown.
- Your code can catch this exception (using catch) and handle it in some rational manner.
- System-generated exceptions are automatically thrown by the Java runtime system.
- To manually throw an exception, use the keyword throw.
- Any exception that is thrown out of a method must be specified as such by a throws clause.
- Any code that absolutely must be executed after a try block completes is put in a finally block.

- 1. try
- 2. catch
- 3. throw
- 4. throws
- 5. finally

This is the general form of an exception-handling block:

```
try {
// block of code to monitor for errors
catch (ExceptionType1 exOb) {
// exception handler for ExceptionType1
catch (ExceptionType2 exOb) {
// exception handler for ExceptionType2
// ...
finally {
// block of code to be executed after try block ends
```

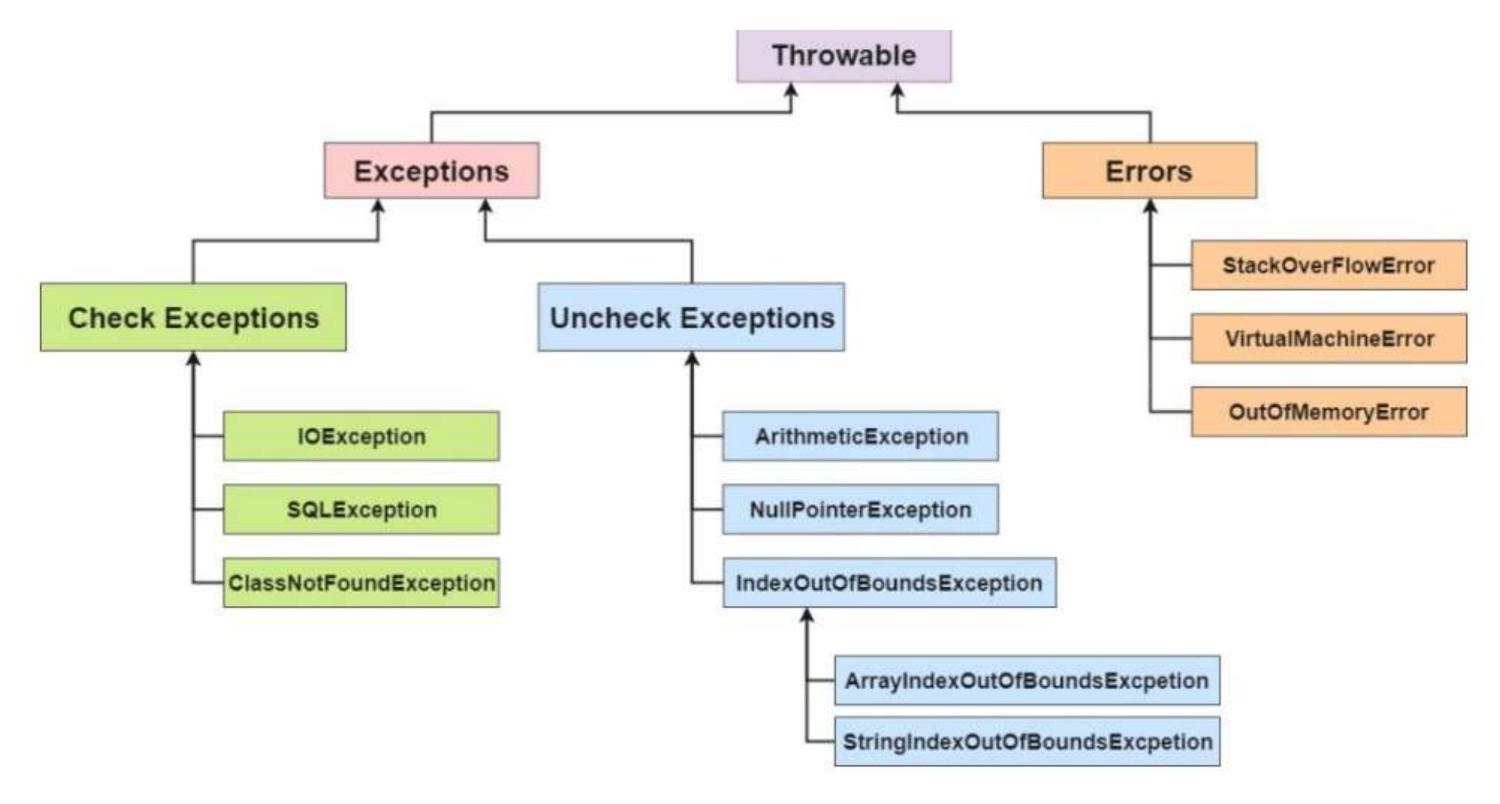

Exception Handling - Types

Exception Types

- All exception types are subclasses of the built-in class Throwable. Java.lang.Throwable;
- Throwable has two subclasses Exception, Error

Exception

- Exceptional conditions that user programs should catch.
- There is an important subclass of Exception, called RuntimeException.
- Exceptions of this type are automatically defined for the programs that you write and include things such as division by zero and invalid array indexing.


Error

- Exceptions that are not expected to be caught under normal circumstances by your program
- Exceptions of type Error are used by the Java run-time system to indicate errors having to do with the run-time environment, itself.
- Stack overflow is an example of such an error.

Exception Handling - Types

Exception Handling - Types

Unchecked Exceptions:

- They are not checked at compile-time but at run-time.
- For example: ArithmeticException, NullPointerException, ArrayIndexOutOfBoundsException, exceptions under Error class, etc.

Checked Exceptions:

- They are checked at compile-time.
- For example, IOException, InterruptedException, etc.

Uncaught Exception

```
public class Exc0 {
public static void main(String args[]) {
int d = 0;
int a = 42 / d;
}
}
```

- In this example, we haven't supplied any exception handlers of our own, so the exception is caught by the default handler provided by the Java run-time system.
- Any exception that is not caught by your program will ultimately be processed by the default handler

```
Here is the exception generated when this example is executed: 

java.lang.ArithmeticException: / by zero

at Exc0.main(Exc0.java:4)
```


Exception Handling – Try, Catch

What if I want to handle exception by myself manually?

Using Try and Catch

Manually handle exception. It has two benefits

- First, it allows you to fix the error.
- Second, it prevents the program from automatically terminating.
- To guard against and handle a run-time error, simply enclose the code that you want to monitor inside a try block.
- Immediately following the try block, include a catch clause that specifies the exception type that you wish to catch.

Exception Handling - Try Catch

What if I want to handle exception by myself manually?

Using Try and Catch

```
public class Exc2 {
public static void main(String args[]) {
int d, a;
try { // monitor a block of code.
d = 0;
a = 42 / d;
System.out.println("This will not be printed.");
catch (ArithmeticException e) { // catch divide-by-zero error
System.out.println("Division by zero.");
System.out.println("Hello I caught exception");
```

Notice that the call to println() inside the try block is never executed.

Once an exception is thrown, program control transfers out of the try block into the catch block.

Exception Handling – Multiple Catch

Multiple catch Clauses

- In some cases, more than one exception could be raised by a single piece of code.
- To handle this type of situation, you can specify two or more catch clauses, each catching a different type of exception.
- When an exception is thrown, each catch statement is inspected in order, and the first one whose type matches that of the exception is executed.
- After one catch statement executes, the others are bypassed, and execution continues after the try / catch block

Exception Handling – Multiple Catch

Multiple catch Clauses

```
public class MultipleCatches {
public static void main(String args[]) {
try {
String a=null;
System.out.println("a = " + a.length());
int b = 42 / 0;
int c[] = \{ 1,2,3 \};
c[5] = 99;
catch(ArithmeticException e) {
System.out.println("Divide by 0: " + e);
catch (NullPointerException e){
  System.out.println("Null Pointer Exception "+e);
catch(ArrayIndexOutOfBoundsException e) {
System.out.println("Array index oob: " + e);
```

```
catch(Exception e){
    System.out.println("General Exception " + e);
}
System.out.println("After try/catch blocks.");
}
}
```


THANK YOU