
SNS COLLEGE OF ENGINEERING
Kurumbapalayam(Po), Coimbatore – 641 107

Accredited by NAAC-UGC with ‘A’ Grade

Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

Department of Information Technology

19CS204 OBJECT ORIENTED PROGRAMMING

I YEAR /II SEMESTER

Topic – Exception Handling

Exception Handling / R.kamalakkannan/
CSE-IOT /SNSCE

1/24

2/14Exception Handling / R.kamalakkannan/ CSE-IOT /SNSCE

Exception Handling

• An exception is an abnormal condition that

arises in a code sequence at run time.

• In other words, an exception is a runtime error.

• In computer languages that do not support

exception handling, errors must be checked and

handled manually—typically through the use of

error codes, and so on.

• This approach is as cumbersome as it is

troublesome.

• Java’s exception handling avoids these problems

and, in the process, brings run-time error

management into the object-oriented world.

3/14Exception Handling / R.kamalakkannan/ CSE-IOT /SNSCE

Exception Handling

• A Java exception is an object that describes an exceptional (that is, error) condition that has

occurred in a piece of code.

• When an exceptional condition arises, an object representing that exception is created and

thrown in the method that caused the error.

• That method may choose to handle the exception itself, or pass it on. Either way, at some point, the

exception is caught and processed.

• Exceptions can be generated by the Java run-time system, or they can be manually generated by your

code.

• Exceptions thrown by Java relate to fundamental errors that violate the rules of the Java language or

the constraints of the Java execution environment.

• Manually generated exceptions are typically used to report some error condition to the caller of a

method.

4/14Exception Handling / R.kamalakkannan/ CSE-IOT /SNSCE

Exception Handling

Java exception handling is managed via five keywords:

• try, catch, throw, throws, and finally.

• Program statements that you want to monitor for exceptions are contained

within a try block. If an exception occurs within the try block, it is thrown.

• Your code can catch this exception (using catch) and handle it in some rational

manner.

• System-generated exceptions are automatically thrown by the Java runtime

system.

• To manually throw an exception, use the keyword throw.

• Any exception that is thrown out of a method must be specified as such by a

throws clause.

• Any code that absolutely must be executed after a try block completes is put in

a finally block.

5/14Exception Handling / R.kamalakkannan/ CSE-IOT /SNSCE

Exception Handling

This is the general form of an exception-handling block:

try {

// block of code to monitor for errors

}

catch (ExceptionType1 exOb) {

// exception handler for ExceptionType1

}

catch (ExceptionType2 exOb) {

// exception handler for ExceptionType2

}

// ...

finally {

// block of code to be executed after try block ends

}

6/14Exception Handling / R.kamalakkannan/ CSE-IOT /SNSCE

Exception Handling - Types

Exception Types

• All exception types are subclasses of the built-in class Throwable. Java.lang.Throwable;

• Throwable has two subclasses Exception, Error

Exception

• Exceptional conditions that user programs should catch.

• There is an important subclass of Exception, called RuntimeException.

• Exceptions of this type are automatically defined for the programs that you write and include things

such as division by zero and invalid array indexing.

Error

• Exceptions that are not expected to be caught under normal circumstances by your program

• Exceptions of type Error are used by the Java run-time system to indicate errors having to do with the

run-time environment, itself.

• Stack overflow is an example of such an error.

7/14Exception Handling / R.kamalakkannan/ CSE-IOT /SNSCE

Exception Handling - Types

8/14Exception Handling / R.kamalakkannan/ CSE-IOT /SNSCE

Exception Handling - Types

Unchecked Exceptions:

• They are not checked at compile-time but at run-time.

• For example: ArithmeticException, NullPointerException, ArrayIndexOutOfBoundsException,

exceptions under Error class, etc.

Checked Exceptions:

• They are checked at compile-time.

• For example, IOException, InterruptedException, etc.

9/14Exception Handling / R.kamalakkannan/ CSE-IOT /SNSCE

Exception Handling

Uncaught Exception

public class Exc0 {

public static void main(String args[]) {

int d = 0;

int a = 42 / d;

}

}

• In this example, we haven’t supplied any exception handlers of our own, so the exception is caught

by the default handler provided by the Java run-time system.

• Any exception that is not caught by your program will ultimately be processed by the default handler

Here is the exception generated when this example is executed:

java.lang.ArithmeticException: / by zero

at Exc0.main(Exc0.java:4)

10/14Exception Handling / R.kamalakkannan/ CSE-IOT /SNSCE

Exception Handling – Try, Catch

What if I want to handle exception by myself manually?

Using Try and Catch

Manually handle exception. It has two benefits

• First, it allows you to fix the error.

• Second, it prevents the program from automatically terminating.

• To guard against and handle a run-time error, simply enclose the code that you want to monitor inside

a try block.

• Immediately following the try block, include a catch clause that specifies the exception type that you

wish to catch.

11/14Exception Handling / R.kamalakkannan/ CSE-IOT /SNSCE

Exception Handling – Try Catch

What if I want to handle exception by myself manually?

Using Try and Catch

public class Exc2 {

public static void main(String args[]) {

int d, a;

try { // monitor a block of code.

d = 0;

a = 42 / d;

System.out.println("This will not be printed.");

}

catch (ArithmeticException e) { // catch divide-by-zero error

System.out.println("Division by zero.");

}

System.out.println(“Hello I caught exception”);

}}

Notice that the call to println() inside the

try block is never executed.

Once an exception is thrown, program

control transfers out of the try block into

the catch block.

12/14Exception Handling / R.kamalakkannan/ CSE-IOT /SNSCE

Exception Handling – Multiple Catch

Multiple catch Clauses

• In some cases, more than one exception could be raised by a single piece of code.

• To handle this type of situation, you can specify two or more catch clauses, each catching a different

type of exception.

• When an exception is thrown, each catch statement is inspected in order, and the first one whose type

matches that of the exception is executed.

• After one catch statement executes, the others are bypassed, and execution continues after the try /

catch block

13/14Exception Handling / R.kamalakkannan/ CSE-IOT /SNSCE

Exception Handling – Multiple Catch

Multiple catch Clauses

public class MultipleCatches {

public static void main(String args[]) {

try {

String a=null;

System.out.println("a = " + a.length());

int b = 42 / 0;

int c[] = { 1,2,3 };

c[5] = 99;

}

catch(ArithmeticException e) {

System.out.println("Divide by 0: " + e);

}

catch (NullPointerException e){

System.out.println("Null Pointer Exception " +e);

}

catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index oob: " + e);

}

catch(Exception e){

System.out.println("General Exception " + e);

}

System.out.println("After try/catch blocks.");

}

}

14/14Exception Handling / R.kamalakkannan/ CSE-IOT /SNSCE

THANK YOU

