SNS COLLEGE OF ENGINEERING

Kurumbapalayam(Po), Coimbatore - 641 107

Accredited by NAAC-UGC with ‘A’ Grade
Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

LT rITUTIONS

Department of Information Technology

19CS204 OBJECT ORIENTED PROGRAMMING

[YEAR /Il SEMESTER

Topic - Exception Handling

00
00
00
Exception Handling / R.kamalakkannan/ 1/24
CSE-IOT /SNSCE

Exception Handling

An exception Is an abnormal condition that
arises in a code sequence at run time.

In other words, an exception Is a runtime error.

In computer languages that do not support
exception handling, errors must be checked and
handled manually—typically through the use of
error codes, and so on.

This approach is as cumbersome as it Is
troublesome.

Java’s exception handling avoids these problems
and, In the process, brings run-time error
management into the object-oriented world.

Turionss

Exception

A girl is watching a video on Interrupted in watching
Youtube on the computer video due to internet
disconnectivity suddenly

D Stopped
Car punctured

> Puncture repaired

Exception Handled
Exception

Fig: Realtime Example of Exception Handling

Exception Handling / R.kamalakkannan/ CSE-IOT /SNSCE -

~

~»

R

TUT1o0]

Exception Handling

00 0"

)
A Java exception is an object that describes an exceptional (that is, error) condition that has @
occurred In a piece of code. ®

When an exceptional condition arises, an object representing that exception iIs created and
thrown in the method that caused the error.

That method may choose to handle the exception itself, or pass it on. Either way, at some point, the
exception iIs caught and processed.

Exceptions can be generated by the Java run-time system, or they can be manually generated by your
code.

Exceptions thrown by Java relate to fundamental errors that violate the rules of the Java language or
the constraints of the Java execution environment.

Manually generated exceptions are typically used to report some error condition to the caller of a

method.
Exception Handling / R.kamalakkannan/ CSE-IOT /SNSCE -

Exception Handling

Java exception handling is managed via five keywords:
* try, catch, throw, throws, and finally.

* Program statements that you want to monitor for exceptions are contained
within a try block. If an exception occurs within the try block, it is thrown.

1. try
» Your code can catch this exception (using catch) and handle it in some rational 2. catch
AR 3. throw
« System-generated exceptions are automatically thrown by the Java runtime 4. t_hl‘ﬂWE
system. 5. finally

« To manually throw an exception, use the keyword throw.

« Any exception that is thrown out of a method must be specified as such by a
throws clause.

* Any code that absolutely must be executed after a try block completes Is put In

a finally block.
Exception Handling / R.kamalakkannan/ CSE-IOT /SNSCE

Exception Handling

This is the general form of an exception-handling block:

try {
/] block of code to monitor for errors

}

catch (ExceptionTypel exOb) {
// exception handler for ExceptionTypel

}

catch (ExceptionType2 exOb) {
// exception handler for ExceptionType2

}

/...
finally {
// block of code to be executed after try block ends

}

Problem
Occurs

Create
Exception

Throw
Exception

Handle
Exception

Exception Handling / R.kamalakkannan/ CSE-IOT /SNSCE

Exception Types

Exception

Error

Exception Handling - Types

All exception types are subclasses of the built-in class Throwable. Java.lang. Throwable;

Throwable has two subclasses Exception, Error

Exceptional conditions that user programs should catch.

There iIs an important subclass of Exception, called RuntimeException.

Exceptions of this type are automatically defined for the programs that you write and include things
such as division by zero and invalid array indexing.

Exceptions that are not expected to be caught under normal circumstances by your program
Exceptions of type Error are used by the Java run-time system to indicate errors having to do with the
run-time environment, itself.

Stack overflow is an example of such an error.

Exception Handling / R.kamalakkannan/ CSE-IOT /SNSCE -

Exception Handling - Types

~ Throwable I
4 %
Exceptions Errors
A A A
StackOverFlowError
Check Exceptions Uncheck Exceptions

A VirtualMachineError
L OutOfMemoryError

IOException ArithmeticException

SQLException NullPointerException

ClassNotFoundException IndexOutOfBoundsException

ks

ArrayindexOutOfBoundsExcpetion

StringindexOutOfBoundsExcpetion

Exception Handling / R.kamalakkannan/ CSE-IOT /SNSCE

Exception Handling - Types

Unchecked Exceptions:
« They are not checked at compile-time but at run-time.

« For example: ArithmeticException, NullPointerException, ArraylndexOutOfBoundsException,
exceptions under Error class, etc.

Checked Exceptions:
* They are checked at compile-time.
« For example, IOException, InterruptedException, etc.

Exception Handling / R.kamalakkannan/ CSE-IOT /SNSCE -

Exception Handling

Uncaught Exception

public class Exc0 {
public static void main(String args[]) {

Intd =0;
Inta=42/d:;
¥

¥

 In this example, we haven’t supplied any exception handlers of our own, so the exception Is caught
by the default handler provided by the Java run-time system.

« Any exception that is not caught by your program will ultimately be processed by the default handler

Here is the exception generated when this example is executed:
java.lang.ArithmeticException: / by zero
at Exc0.main(Exc0.java:4)

Exception Handling / R.kamalakkannan/ CSE-IOT /SNSCE -

Exception Handling - Try, Catch

What if | want to handle exception by myself manually?

Using Try and Catch

Manually handle exception. It has two benefits

* First, it allows you to fix the error.

« Second, It prevents the program from automatically terminating.

« To guard against and handle a run-time error, simply enclose the code that you want to monitor inside
a try block.

« Immediately following the try block, include a catch clause that specifies the exception type that you
wish to catch.

Exception Handling / R.kamalakkannan/ CSE-IOT /SNSCE -

Exception Handling - Try Catch

What if | want to handle exception by myself manually?

Using Try and Catch Notice that the call to printIn() inside the

public class Exc2 { try block is never executed.

public static void main(String args[]) {

Intd, a;

try { // monitor a block of code.

d=0;

a=42/d;

System.out.printIn(*This will not be printed.");

¥

catch (ArithmeticException e) { // catch divide-by-zero error
System.out.printin("Division by zero.");

}

System.out.printin(“Hello | caught exception™);

I3
Exception Handling / R.kamalakkannan/ CSE-IOT /SNSCE -

Once an exception Is thrown, program
control transfers out of the try block into
the catch block.

Exception Handling - Multiple Catch

Multiple catch Clauses

In some cases, more than one exception could be raised by a single piece of code.

« To handle this type of situation, you can specify two or more catch clauses, each catching a different
type of exception.

* When an exception Is thrown, each catch statement is inspected in order, and the first one whose type
matches that of the exception is executed.

« After one catch statement executes, the others are bypassed, and execution continues after the try /
catch block

Exception Handling / R.kamalakkannan/ CSE-IOT /SNSCE -

Exception Handling - Multiple Catch

Multiple catch Clauses
public class MultipleCatches { catch(Exception e){
public static void main(String args|]) { System.out.printin(*General Exception " + e);
try { }
String a=null; System.out.printin("After try/catch blocks.");
System.out.printin("a =" + a.length()); 1
Intbh=42/0; 1
intc[]={1,2,3};
c[5] = 99;
}
catch(ArithmeticException e) {
System.out.printin("Divide by 0: " + e);
}
catch (NullPointerException e){
System.out.printin("Null Pointer Exception " +e);
}
catch(ArraylndexOutOfBoundsException e) {
System.out.printin("Array index oob: " + e);

¥
Exception Handling / R.kamalakkannan/ CSE-IOT /SNSCE

THANK YOU

Exception Handling / R.kamalakkannan/ CSE-IOT /SNSCE

