
SNS COLLEGE OF ENGINEERING
Kurumbapalayam(Po), Coimbatore – 641 107

Accredited by NAAC-UGC with ‘A’ Grade

Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

Department of Information Technology

19CS204 OBJECT ORIENTED PROGRAMMING

I YEAR /II SEMESTER

Topic – Thread Synchronization

Thread Synchronization/
kamalakkannan R / CSE-IOT/SNSCE

1/24

2/11Thread Synchronization/ kamalakkannan R / CSE-IOT/SNSCE

Thread Synchronization

• Synchronization is a process of handling resource accessibility by multiple thread requests. The

main purpose of synchronization is to avoid thread interference&To prevent consistency

problem.

• When two or more threads need access to a shared resource, they need some way to ensure that the

resource will be used by only one thread at a time.

• The process by which this is achieved is called synchronization.

• For example, If a thread is writing some data another thread may be reading the same data at that

time. This may bring inconsistency.

• Synchronization in java is the capability to control the access of multiple threads to any shared

resource.

3/11Thread Synchronization/ kamalakkannan R / CSE-IOT/SNSCE

Thread Synchronization

• Key to synchronization is the concept of the monitor.

• A monitor is an object that is used as a mutually exclusive lock.

• Only one thread can own a monitor at a given time.

• When a thread acquires a lock, it is said to have entered the monitor.

• All other threads attempting to enter the locked monitor will be suspended until the first thread exits

the monitor.

• These other threads are said to be waiting for the monitor.

• A thread that owns a monitor can reenter the same monitor if it so desires.

4/11Thread Synchronization/ kamalakkannan R / CSE-IOT/SNSCE

Thread Synchronization

• Synchronization can be accomplished by two ways in java,

• By Synchronized Method

• By Synchronized Statement or Block

Synchronized Method

• To enter an object’s monitor, just call a method that has been modified with the synchronized

keyword.

• While a thread is inside a synchronized method, all other threads that try to call it (or any other

synchronized method) on the same instance have to wait.

• To exit the monitor and relinquish control of the object to the next waiting thread, the owner of the

monitor simply returns from the synchronized method.

5/11Thread Synchronization/ kamalakkannan R / CSE-IOT/SNSCE

Thread Synchronization

Example without synchronization

class Table{

void printTable(int n){//method not synchronized

for(int i=1;i<=5;i++){

System.out.println(n*i);

try{

Thread.sleep(400);

}catch(Exception e){System.out.println(e);}

} }

}

class MyThread1 extends Thread{

Table t;

MyThread1(Table t){

this.t=t;

}

public void run(){

t.printTable(5);

} }

class MyThread2 extends Thread{

Table t;

MyThread2(Table t){

this.t=t;

}

public void run(){

t.printTable(100);

}

}

public class TestSynchronization1{

public static void main(String args[]){

Table obj = new Table();//only one object

MyThread1 t1=new MyThread1(obj);

MyThread2 t2=new MyThread2(obj);

t1.start();

t2.start();

}

}

6/11Thread Synchronization/ kamalakkannan R / CSE-IOT/SNSCE

Thread Synchronization

Example 1 with Synchronized Method

class Table{

synchronized void printTable(int n){

for(int i=1;i<=5;i++){

System.out.println(n*i);

try{

Thread.sleep(400);

}catch(Exception e){System.out.println(e);}

} }

}

class MyThread1 extends Thread{

Table t;

MyThread1(Table t){

this.t=t;

}

public void run(){

t.printTable(5);

} }

class MyThread2 extends Thread{

Table t;

MyThread2(Table t){

this.t=t;

}

public void run(){

t.printTable(100);

}

}

public class TestSynchronization1{

public static void main(String args[]){

Table obj = new Table();//only one object

MyThread1 t1=new MyThread1(obj);

MyThread2 t2=new MyThread2(obj);

t1.start();

t2.start();

}

}

7/11Thread Synchronization/ kamalakkannan R / CSE-IOT/SNSCE

Thread Synchronization

Synchronized block

• While creating synchronized methods within classes that you create is an easy and effective means of

achieving synchronization, it will not work in all cases.

• To understand why, consider the following. Imagine that you want to synchronize access to objects of

a class that was not designed for multithreaded access.

• That is, the class does not use synchronized methods.

• This is the general form of the synchronized statement:

synchronized(objRef) {

// statements to be synchronized

}

• Here, objRef is a reference to the object being synchronized.

• A synchronized block ensures that a call to a synchronized method that is a member of objRef’s class

occurs only after the current thread has successfully entered objRef’s monitor.

8/11Thread Synchronization/ kamalakkannan R / CSE-IOT/SNSCE

Thread Synchronization

Example 2 Synchronized block

class Table{

void printTable(int n){

synchronized(this){//synchronized block

for(int i=1;i<=5;i++){

System.out.println(n*i);

try{

Thread.sleep(400);

}catch(Exception e){System.out.println(e);}

} }

}//end of the method

}

class MyThread1 extends Thread{

Table t;

MyThread1(Table t){

this.t=t;

}

public void run(){

t.printTable(5);

} }

class MyThread2 extends Thread{

Table t;

MyThread2(Table t){

this.t=t;

}

public void run(){

t.printTable(100);

}

}

public class TestSynchronizedBlock1{

public static void main(String args[]){

Table obj = new Table();//only one object

MyThread1 t1=new MyThread1(obj);

MyThread2 t2=new MyThread2(obj);

t1.start();

t2.start();

}

}

9/11Thread Synchronization/ kamalakkannan R / CSE-IOT/SNSCE

Thread Synchronization
Example 3 Synchronized Method
class Callme {

synchronized void call(String msg) {

System.out.print("[" + msg);

try {

Thread.sleep(1000);

} catch(InterruptedException e) {

System.out.println("Interrupted");

}

System.out.println("]");}}

class Caller implements Runnable {

String msg;

Callme target;

Thread t;

public Caller(Callme targ, String s) {

target = targ;

msg = s;

t = new Thread(this);

t.start();

}

public void run() {

target.call(msg);

}

}

public class Synch {

public static void main(String args[]) {

Callme target = new Callme();

Caller ob1 = new Caller(target, "Hello");

Caller ob2 = new Caller(target, "Synchronized");

Caller ob3 = new Caller(target, "World");

}

}

10/11Thread Synchronization/ kamalakkannan R / CSE-IOT/SNSCE

Thread Synchronization
Example 4 Synchronized Block
class Callme {

void call(String msg) {

System.out.print("[" + msg);

try {

Thread.sleep(1000);

} catch(InterruptedException e) {

System.out.println("Interrupted");

}

System.out.println("]");}}

class Caller implements Runnable {

String msg;

Callme target;

Thread t;

public Caller(Callme targ, String s) {

target = targ;

msg = s;

t = new Thread(this);

t.start();

}
public void run() {

target.call(msg);

}}

public void run() {

synchronized (target) {

target.call(msg);

}

}

}

public class Synch {

public static void main(String args[]) {

Callme target = new Callme();

Caller ob1 = new Caller(target, "Hello");

Caller ob2 = new Caller(target, "Synchronized");

Caller ob3 = new Caller(target, "World");

}

}

11/11Thread Synchronization/ kamalakkannan R / CSE-IOT/SNSCE

THANK YOU

