
SNS COLLEGE OF ENGINEERING
Kurumbapalayam(Po), Coimbatore – 641 107

Accredited by NAAC-UGC with ‘A’ Grade

Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

Department of Information Technology

19CS204 OBJECT ORIENTED PROGRAMMING

I YEAR /II SEMESTER

Topic – Thread Methods

Thread Methods/kamalakkannan R/ CSE-
IOT /SNSCE

Thread Methods/kamalakkannan R/ CSE-IOT /SNSCE

Thread methods

 In Java, threads are a way to achieve concurrent execution of code.

 Each thread represents an independent flow of control within a program.

 Java provides several methods and functionalities to work with threads through the

Thread class and other related classes in the java.lang package.

 some commonly used methods of the Thread class in Java:

 start(): This method is used to start the execution of a thread. When called, it

invokes the thread's run() method.

 run(): This method contains the code that is executed by the thread. It is the

entry point of the thread's execution logic. You need to override this method in a

custom class that extends Thread.

Thread Methods/kamalakkannan R/ CSE-IOT /SNSCE

Thread methods

sleep(long millis): This method pauses the execution of the current thread for

the specified number of milliseconds. It is commonly used to introduce delays or

control timing in multithreaded programs.

join(): This method allows one thread to wait for the completion of another

thread. When a thread calls join() on another thread, it will block until that thread

finishes its execution.

isAlive(): This method checks whether a thread is still active or alive. It returns

true if the thread is alive, and false otherwise.

Thread Methods/kamalakkannan R/ CSE-IOT /SNSCE

Thread methods

interrupt(): This method interrupts the execution of a thread. It sets the interrupt

status of the thread, which can be checked using the isInterrupted() method.

getName() and setName(String name): These methods allow getting and setting

the name of a thread, respectively. The thread's name can be helpful for

identification and debugging purposes.

Thread Methods/kamalakkannan R/ CSE-IOT /SNSCE

Thread methods

Example – isAlive()
public class JavaIsAliveExp extends Thread

{

public void run()

{

try

{

Thread.sleep(300);

System.out.println("is run() method isAlive "+Thread.currentThread().isAlive());

}

catch (InterruptedException ie) {

}

}

public static void main(String[] args)

{

JavaIsAliveExp t1 = new JavaIsAliveExp();

System.out.println("before starting thread isAlive: "+t1.isAlive());

t1.start();

System.out.println("after starting thread isAlive: "+t1.isAlive());

}

}

Thread Methods/kamalakkannan R/ CSE-IOT /SNSCE

Thread methods

Example – join()
public class TestJoinMethod1 extends Thread{

public void run(){

for(int i=1;i<=5;i++){

try{

Thread.sleep(500);

}catch(Exception e){System.out.println(e);}

System.out.println(i);

} }

public static void main(String args[]){

TestJoinMethod1 t1=new TestJoinMethod1();

TestJoinMethod1 t2=new TestJoinMethod1();

TestJoinMethod1 t3=new TestJoinMethod1();

t1.start();

try{

t1.join();

}catch(Exception e){System.out.println(e);}

t2.start();

/*try{

t2.join();

}catch(Exception e){System.out.println(e);} */

t3.start();

} }

Thread Methods/kamalakkannan R/ CSE-IOT /SNSCE

Thread methods

Example : isAlive() and join()
class NewThread implements Runnable {

String name; // name of thread

Thread t;

NewThread(String threadname) {

name = threadname;

t = new Thread(this, name);

System.out.println("New thread: " + t);

t.start(); // Start the thread

}

// This is the entry point for thread.

public void run() {

try {

for(int i = 5; i > 0; i--) {

System.out.println(name + ": " + i);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println(name + " interrupted.");

}

System.out.println(name + " exiting.");

}

}

class DemoJoin {

public static void main(String args[]) {

NewThread ob1 = new NewThread("One");

NewThread ob2 = new NewThread("Two");

NewThread ob3 = new NewThread("Three");

System.out.println("Thread One is alive: “ + ob1.t.isAlive());

System.out.println("Thread Two is alive: “ + ob2.t.isAlive());

System.out.println("Thread Three is alive: “ + ob3.t.isAlive());

// wait for threads to finish

try {

System.out.println("Waiting for threads to finish.");

ob1.t.join();

ob2.t.join();

ob3.t.join();

} catch (InterruptedException e) {

System.out.println("Main thread Interrupted");

}

System.out.println("Thread One is alive: “ + ob1.t.isAlive());

System.out.println("Thread Two is alive: “ + ob2.t.isAlive());

System.out.println("Thread Three is alive: “ + ob3.t.isAlive());

System.out.println("Main thread exiting.");

} }

Thread Methods/kamalakkannan R/ CSE-IOT /SNSCE

Thread methods

Thread Priorities

• Thread priorities are used by the thread scheduler to decide when each thread should be allowed to

run.

• In theory, over a given period of time, higher-priority threads get more CPU time than lower-priority

threads.

• Thread priority decides when to switch from one running thread to another, process is called

context switching

• A higher-priority thread can also preempt a lower-priority one.

• To set a thread’s priority, use the setPriority() method, which is a member of Thread.

This is its general form:

final void setPriority(int level)

• Here, level specifies the new priority setting for the calling thread.

Thread Methods/kamalakkannan R/ CSE-IOT /SNSCE

Thread methods

Thread Priorities

• In place of defining the priority in integers, we can use MIN_PRIORITY, NORM_PRIORITY or

MAX_PRIORITY.

• The value of level must be within the range MIN_PRIORITY and MAX_PRIORITY.

• Currently, these values are 1 and 10, respectively.

• To return a thread to default priority, specify NORM_PRIORITY, which is currently 5.

• These priorities are defined as static final variables within Thread. For example

• public static int MIN_PRIORITY

• You can obtain the current priority setting by calling the getPriority() method of Thread, shown here:

final int getPriority()

Thread Methods/kamalakkannan R/ CSE-IOT /SNSCE

Thread methods

Thread Priorities

public class TestMultiPriority1 extends Thread{

public void run(){

System.out.println("running thread name is:"+Thread.currentThread().getName());

System.out.println("running thread priority is:"+Thread.currentThread().getPriority());

}

public static void main(String args[]){

TestMultiPriority1 m1=new TestMultiPriority1();

TestMultiPriority1 m2=new TestMultiPriority1();

TestMultiPriority1 m3=new TestMultiPriority1();

System.out.println("Default Priority: "+Thread.currentThread().getPriority());

m1.setPriority(Thread.MIN_PRIORITY);

m2.setPriority(Thread.MAX_PRIORITY);

m3.setPriority(Thread.NORM_PRIORITY);

m1.start();

m2.start();

m3.start();

}

}

Thread Methods/kamalakkannan R/ CSE-IOT /SNSCE

THANK YOU

