

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

AN AUTONOMOUS INSTITUTION

Approved by AICTE, New Delhi and Affiliated to Anna University, Chennai

2.6 GAUSS DIVERGENCE THEOREM

This theorem enables us to convert a surface integral of a vector function on a closed surface into volume integral.

Statement of Gauss Divergence theorem

If V is the volume bounded by a closed surface S and if a vector function \vec{F} is continuous and has continuous partial derivatives in V and on S, then

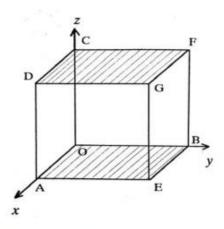
$$\iint\limits_{S} \vec{F} \cdot \hat{n} \, ds = \iiint\limits_{V} \nabla \cdot \vec{F} \, dv$$

Where \hat{n} is the unit outward normal to the surface S and dV = dxdydz

Problems based on gauss Divergence theorem

Example: 2.83 Verify the G.D.T for $\vec{F} = 4xz\vec{\imath} - y^2\vec{\jmath} + yz\vec{k}$ over the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.

Solution:



Gauss divergence theorem is $\iint_{S} \vec{F} \cdot \hat{n} \, ds = \iiint_{V} \nabla \cdot \vec{F} \, dv$

Given
$$\vec{F} = 4xz\vec{\imath} - y^2\vec{\jmath} + yz\vec{k}$$

$$\nabla \cdot \vec{F} = 4z - 2y + y$$

$$= 4z - y$$

Now, R.H.S =
$$\iint_{V} \nabla \cdot \vec{F} \, dv$$

$$= \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} (4z - y) dx dy dz$$

$$= \int_{0}^{1} \int_{0}^{1} [(4xz - yz)]_{0}^{1} \, dy dz$$

$$= \int_{0}^{1} \int_{0}^{1} (4z - y) dy dz$$

$$= \int_{0}^{1} \left(4zy - \frac{y^{2}}{2} \right)_{0}^{1} \, dz$$

$$= \int_{0}^{1} \left(4z - \frac{1}{2} \right) \, dz$$

$$= \left[4\frac{z^{2}}{2} - \frac{1}{2}z \right]_{0}^{1} = \left(2 - \frac{1}{2} \right) - 0 = \frac{3}{2}$$
Now, L.H.S =
$$\iint_{S} \vec{F} \cdot \hat{n} \, ds = \iint_{S_{1}} + \iint_{S_{2}} + \iint_{S_{3}} + \iint_{S_{4}} + \iint_{S_{5}} + \iint_{S_{6}}$$

Faces	Plane	dS	ñ	$\vec{F} \cdot \hat{n}$	Equation	$\vec{F} \cdot \hat{n}$ on S	$= \iint\limits_{S} \vec{F} \cdot \hat{n} ds$
S_1 (Bottom)	ху	dxdy	$-\vec{k}$	-yz	z = 0	0	$\int_0^1 \int_0^1 0 \ dx dy$
$S_2(Top)$	xy	dxdy	\vec{k}	yz	z = 1	у	$\int_0^1 \int_0^1 y dx dy$
$S_3(Left)$	xz	dxdz	<i>−j</i>	y ²	<i>y</i> = 0	0	$\int_0^1 \int_0^1 0 \ dx dz$
$S_4(Right)$	xz	dxdz	j	-y ²	y = 1	-1	$\int_0^1 \int_0^1 -1 dx dz$
$S_5(Back)$	yz	dydz	$-\vec{\iota}$	-4xz	x = 0	0	$\int_0^1 \int_0^1 0 dy dz$
$S_6(Front)$	yz	dydz	ī	4xz	<i>x</i> = 1	4z	$\int_0^1 \int_0^1 4z dy dz$

$$(i) \iint_{S1} \vec{F} \cdot \hat{n} \, ds + \iint_{S2} \vec{F} \cdot \hat{n} \, ds = \int_{0}^{1} \int_{0}^{1} 0 \, dx \, dy + \int_{0}^{1} \int_{0}^{1} y \, dx \, dy$$

$$= 0 + \int_{0}^{1} \int_{0}^{1} y \, dx \, dy$$

$$= \int_{0}^{1} [yx]_{0}^{1} \, dy$$

$$= \int_{0}^{1} y \, dy$$

$$= \left[\frac{y^{2}}{2} \right]_{0}^{1} = \frac{1}{2} - 0 = \frac{1}{2}$$

$$(ii) \iint_{S3} \vec{F} \cdot \hat{n} \, ds + \iint_{S4} \vec{F} \cdot \hat{n} \, ds = \int_{0}^{1} \int_{0}^{1} 0 \, dx \, dz + \int_{0}^{1} \int_{0}^{1} -1 \, dx \, dz$$

$$= 0 + \int_{0}^{1} \int_{0}^{1} -1 \, dx \, dz$$

$$= -\int_{0}^{1} [x]_{0}^{1} \, dz$$

$$= -\int_{0}^{1} dz$$

$$= -[z]_{0}^{1} = -[1]$$

$$(iii) \iint_{S5} \vec{F} \cdot \hat{n} \, ds + \iint_{S6} \vec{F} \cdot \hat{n} \, ds = \int_{0}^{1} \int_{0}^{1} 0 \, dy \, dz + \int_{0}^{1} \int_{0}^{1} 4z \, dy \, dz$$

$$= 0 + \int_{0}^{1} \int_{0}^{1} 4z \, dy \, dz$$

$$= 0 + \int_{0}^{1} [4zy]_{0}^{1} \, dz$$

$$= 4 \left[\frac{z^{2}}{2} \right]_{0}^{1} = 4 \left(\frac{1}{2} - 0 \right) = 2$$

$$\therefore \iint_{S} \vec{F} \cdot \hat{n} \, ds = \iint_{S1} + \iint_{S2} + \iint_{S3} + \iint_{S4} + \iint_{S4} + \iint_{S6} + \iint_{S6}$$

$$= (i) + (ii) + (iii)$$

$$= \frac{1}{2} - 1 + 2 = \frac{3}{2}$$

$$\therefore \iint_{S} \vec{F} \cdot \hat{n} \, ds = \iiint_{V} \nabla \cdot \vec{F} \, dv$$

Hence Gauss divergence theorem is verified.

Example: 2.84 Verify the G.D.T for $\vec{F}=(x^2-yz)\vec{\imath}+(y^2-xz)\vec{\jmath}+(z^2-xy)\vec{k}$ over the rectangular parallelopiped $0 \le x \le a$, $0 \le y \le b$, $0 \le z \le c$. (OR)

Verify the G.D.T for $\vec{F}=(x^2-yz)\vec{\imath}+(y^2-xz)\vec{\jmath}+(z^2-xy)\vec{k}$ over the rectangular parallelopiped bounded by x=0, x=a, y=0, y=b, z=0, z=c. Solution:

Gauss divergence theorem is
$$\iint_{S} \vec{F} \cdot \hat{n} \, ds = \iiint_{V} \nabla \cdot \vec{F} \, dv$$

Given
$$\vec{F} = (x^2 - yz)\vec{i} + (y^2 - xz)\vec{j} + (z^2 - xy)\vec{k}$$

$$\nabla \cdot \vec{F} = 2x + 2y + 2z = 2(x + y + z)$$

Now, R.H.S =
$$\iiint_{V} \nabla \cdot \vec{F} \, dv$$

$$=2\int_{0}^{c}\int_{0}^{b}\int_{0}^{a}(x+y+z)dxdydz$$

$$=2\int_{0}^{c}\int_{0}^{b}\left[\left(\frac{x^{2}}{2}+xy+xz\right)\right]_{0}^{a}dydz$$

$$=2\int_0^c\int_0^b\left(\frac{a^2}{2}+ay+az\right)dydz$$

$$=2\int_{0}^{c}\left(\frac{a^{2}y}{2}+\frac{ay^{2}}{2}+azy\right)_{0}^{b}dz$$

$$=2\int_{0}^{c}\left(\frac{a^{2}b}{2}+\frac{ab^{2}}{2}+azb\right)dz$$

$$=2\left[\frac{a^2bz}{2}+\frac{ab^2z}{2}+\frac{abz^2}{2}\right]_0^c$$

$$=2\left(\frac{a^{2}bc}{2}+\frac{ab^{2}c}{2}+\frac{abc^{2}}{2}\right)$$

$$= abc(a+b+c)$$

Now, L.H.S =
$$\iint_{S} \vec{F} \cdot \hat{n} \, ds = \iint_{S1} + \iint_{S2} + \iint_{S3} + \iint_{S4} + \iint_{S5} + \iint_{S6}$$

Faces	Plane	dS	ñ	$\vec{F} \cdot \hat{n}$	Eqn	$\vec{F} \cdot \hat{n}$ on S	$=\iint\limits_{S} \vec{F} \cdot \hat{n} ds$
S_1 (Bottom)	xy	dxdy	$-\vec{k}$	$-(z^2-xy)$	z = 0	xy	$\int_0^b \int_0^a xy dx dy$
$S_2(Top)$	xy	dxdy	\vec{k}	(z^2-xy)	z = c	$c^2 - xy$	$\int_0^b \int_0^a c^2 - xy dx dy$
$S_3(Left)$	xz	dxdz	− <i>j</i>	$-(y^2-xz)$	y = 0	XZ	$\int_0^c \int_0^a xz dx dz$
$S_4(Right)$	xz	dxdz	j	(y^2-xz)	y = b	$b^2 - xz$	$\int_0^c \int_0^a b^2 - xz dx dz$

$S_5(Back)$	yz	dydz	<i>−ī</i>	$-(x^2-yz)$	x = 0	yz	$\int_0^c \int_0^b yz dy dz$
$S_6(Front)$	yz	dydz	ī	$(x^2 - yz)$	x = a	$a^2 - yz$	$\int_0^c \int_0^b a^2 - yz dy dz$

(i)
$$\iint_{S_1} \vec{F} \cdot \hat{n} \, ds + \iint_{S_2} \vec{F} \cdot \hat{n} \, ds = \int_0^b \int_0^a xy \, dx \, dy + \int_0^b \int_0^a c^2 - xy \, dx \, dy$$

$$= \int_0^b \int_0^a c^2 \, dx \, dy$$

$$= c^2 \int_0^a dx \int_0^b dy$$

$$= c^2 [x]_0^a [y]_0^b = c^2 ab$$
(ii) $\iint_{S_3} \vec{F} \cdot \hat{n} \, ds + \iint_{S_4} \vec{F} \cdot \hat{n} \, ds = \int_0^c \int_0^a xz \, dx \, dz + \int_0^c \int_0^a b^2 - xz \, dx \, dz$

$$= \int_0^c \int_0^a b^2 \, dx \, dz$$

$$= b^2 \int_0^a dx \int_0^c dz$$

$$= b^2 [x]_0^a [z]_0^c = b^2 ac$$
(iii) $\iint_{S_5} \vec{F} \cdot \hat{n} \, ds + \iint_{S_6} \vec{F} \cdot \hat{n} \, ds = \int_0^c \int_0^b yz \, dy \, dz + \int_0^c \int_0^b a^2 - yz \, dy \, dz$

$$= \int_0^c \int_0^b a^2 \, dy \, dz$$

$$= a^2 [y]_0^b [z]_0^c = a^2 bc$$

$$\therefore \iint_S \vec{F} \cdot \hat{n} \, ds = \iint_{S_5} + \iint_{S_2} + \iint_{S_3} + \iint_{S_4} + \iint_{S_5} + \iint_{S_6}$$

$$= (i) + (ii) + (iii)$$

$$= abc(a + b + c)$$

$$\therefore \iint_S \vec{F} \cdot \hat{n} \, ds = \iiint_S \nabla \cdot \vec{F} \, dv$$

Hence Gauss divergence theorem is verified.

Example: 2.85 Verify divergence theorem for $\vec{F} = (2x - z)\vec{\imath} + x^2y\vec{\jmath} - xz^2\vec{k}$ over the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. Solution:

Gauss divergence theorem is
$$\iint_{S} \vec{F} \cdot \hat{n} \, ds = \iiint_{F} \nabla \cdot \vec{F} \, dv$$
Given $\vec{F} = (2x - z)\vec{t} + x^{2}y\vec{j} - xz^{2}\vec{k}$

$$\nabla \cdot \vec{F} = 2 + x^{2} - 2xz$$

Now, R.H.S =
$$\iiint_{V} \nabla \cdot \vec{F} \, dv$$

Now, R.H.S =
$$\iiint_{V} \nabla \cdot \vec{F} \, dV$$

$$= \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} (2 + x^{2} - 2xz) dx dy dz$$

$$= \int_{0}^{1} \int_{0}^{1} \left[\left(2x + \frac{x^{3}}{3} - \frac{2zx^{2}}{2} \right) \right]_{0}^{1} \, dy dz$$

$$= \int_{0}^{1} \int_{0}^{1} \left(2 + \frac{1}{3} - z \right) dy dz$$

$$= \int_{0}^{1} \left(2y + \frac{1}{3}y - zy \right)_{0}^{1} \, dz$$

$$= \int_{0}^{1} \left(2 + \frac{1}{3} - z \right) \, dz$$

$$= \left[2z + \frac{1}{3}z - \frac{z^{2}}{2} \right]_{0}^{1}$$

$$= \left(2 + \frac{1}{3} - \frac{1}{2} \right) - 0 = \frac{11}{6}$$

Now, L.H.S =
$$\iint_{S} \vec{F} \cdot \hat{n} ds = \iint_{S1} + \iint_{S2} + \iint_{S3} + \iint_{S4} + \iint_{S5} + \iint_{S6}$$

Faces	Plane	dS	ñ	$\vec{F} \cdot \hat{n}$	Equation	$\vec{F} \cdot \hat{n}$ on S	$= \iint\limits_{S} \vec{F} \cdot \hat{n} ds$
S_1 (Bottom)	xy	dxdy	$-\vec{k}$	XZ ²	z = 0	0	$\int_0^1 \int_0^1 0 \ dx dy$
S ₂ (Top)	xy	dxdy	\vec{k}	$-xz^2$	z = 1	-x	$\int_0^1 \int_0^1 (-x) dx dy$
$S_3(Left)$	xz	dxdz	− <i>j</i>	$-x^2y$	y = 0	0	$\int_0^1 \int_0^1 0 \ dx dz$
$S_4(Right)$	xz	dxdz	j	x²y	<i>y</i> = 1	<i>x</i> ²	$\int_0^1 \int_0^1 x^2 dx dz$
$S_5(Back)$	yz	dydz	$-\vec{\iota}$	-(2x-z)	x = 0	Z	$\int_0^1 \int_0^1 z dy dz$
$S_6(Front)$	yz	dydz	ī	(2x-z)	<i>x</i> = 1	2 – z	$\int_0^1 \int_0^1 2 - z dy dz$

$$(i) \iint_{S1} \vec{F} \cdot \hat{n} \, ds + \iint_{S2} \vec{F} \cdot \hat{n} \, ds = \int_{0}^{1} \int_{0}^{1} 0 \, dx dy + \int_{0}^{1} \int_{0}^{1} (-x) \, dx dy$$
$$= \int_{0}^{1} \int_{0}^{1} (-x) \, dx dy$$

$$= -\int_{0}^{1} \left[\frac{x^{2}}{2} \right]_{0}^{1} dy$$

$$= -\int_{0}^{1} \frac{1}{2} dy$$

$$= -\left[\frac{1}{2} y \right]_{0}^{1} = -\left(\frac{1}{2} - 0 \right) = \frac{-1}{2}$$

$$(ii) \iint_{S3} \vec{F} \cdot \hat{n} ds + \iint_{S4} \vec{F} \cdot \hat{n} ds = \int_{0}^{1} \int_{0}^{1} 0 dx dz + \int_{0}^{1} \int_{0}^{1} x^{2} dx dz$$

$$= \int_{0}^{1} \int_{0}^{1} x^{2} dx dz$$

$$= \int_{0}^{1} \left[\frac{x^{3}}{3} \right]_{0}^{1} dz$$

$$= \int_{0}^{1} \frac{1}{3} dz$$

$$= \left[\frac{1}{3} z \right]_{0}^{1} = \left(\frac{1}{3} - 0 \right) = \frac{1}{3}$$

$$(iii) \iint_{S5} \vec{F} \cdot \hat{n} ds + \iint_{S6} \vec{F} \cdot \hat{n} ds = \int_{0}^{1} \int_{0}^{1} z dy dz + \int_{0}^{1} \int_{0}^{1} (2 - z) dy dz$$

$$= \int_{0}^{1} \int_{0}^{1} 2 dy dz$$

$$= 2 \int_{0}^{1} [y]_{0}^{1} dz$$

$$= 2 \int_{0}^{1} dz$$

$$= 2 \int_{$$

Hence Gauss divergence theorem is verified.

Exercise: 2.5

- 1. Verify divergence theorem for the function $\vec{F} = (x^2 yz)\vec{\imath} (y^2 zx)\vec{\jmath} + (z^2 xy)\vec{k}$ over the surface bounded by x = 0, x = 1, y = 0, y = 2, z = 0, z = 3 Ans: 36
- 2. Verify divergence theorem for the function $\vec{F} = 4xz\vec{\imath} y^2\vec{\jmath} + yz\vec{k}$ over the cube x = 0, x = 1, y = 0, y = 1, z = 0, z = 1 Ans: Common value $= \frac{3}{2}$
- 3. Verify divergence theorem for the function $\vec{F} = (2x z)\vec{\imath} x^2y\vec{\jmath} xz^2\vec{k}$ over the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1

Ans: Common value = $\frac{11}{6}$

- 4. Verify divergence theorem for $\vec{F} = xy^2\vec{\imath} + yz^2\vec{\jmath} + zx^2\vec{k}$ over the region $x^2 + y^2 = 4$ and z = 0, z = 3 Ans: Common value = 84π
- 5. Using divergence theorem, prove that (i) $\iint_{S} \vec{R} \cdot d\vec{S} = 3V \text{ (ii) } \iint_{S} \nabla r^{2} \cdot d\vec{S} = 6V$
- 6. $\vec{F} = x^2 \vec{i} + z \vec{j} + yz \vec{k}$ over the cube bounded by x = 0, x = a, y = 0, y = a, z = 0, z = aAns: Common value $= \frac{3a}{2}$
- 7. $\vec{F} = (x^3 yz)\vec{\imath} 2x^2y\vec{\jmath} + 2\vec{k}$ over the parallelopiped bounded by the planes x = 0, x = 1, y = 0, y = 2, z = 0, z = 3 Ans: Common value = 2