

# **SNS COLLEGE OF ENGINEERING**

Kurumbapalayam (Po), Coimbatore - 641 107



#### AN AUTONOMOUS INSTITUTION

Approved by AICTE, New Delhi and Affiliated to Anna University, Chennai

#### 2.4 Green's Theorem

Green's theorem relates a line integral to the double integral taken over the region bounded by the closed curve.

#### Statement

If M(x, y) and N(x, y) are continuous functions with continuous, partial derivatives in a region R of the xy – plane bounded by a simple closed curve C, then

$$\oint Mdx + Ndy = \iint \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) dx dy, \text{where C is the curve described in the positive direction.}$$

## Vector form of Green's theorem

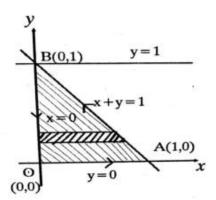
$$\oint_{c} \vec{F} \cdot d\vec{r} = \iint_{c} (\nabla \times \vec{F}) \cdot \vec{k} \, dR$$

#### Problems based on Green's theorem

Example: 2.64 Verify Green's theorem in the plane for  $\int_{C} (3x^2 - 8y^2)dx + (4y - 6xy)dy$  where C

is the boundary of the region defined by x = 0, y = 0, x + y = 1.

Solution:



We have to prove that 
$$\int_{C} M dx + N dy = \iint_{R} \left( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy$$

Here, 
$$M = 3x^2 - 8y^2$$
 and  $N = 4y - 6xy$   

$$\Rightarrow \frac{\partial M}{\partial y} = -16y \qquad \Rightarrow \frac{\partial N}{\partial x} = -6y$$

$$\therefore \int (3x^2 - 8y^2)dx + (4y - 6xy)dy = \int M dx + N dy$$

By Green's theorem in the plane,

$$\int_{c} M dx + N dy = \iint_{R} \left( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy$$

$$= \int_{0}^{1} \int_{0}^{1-x} (10y) dy dx$$

$$= 10 \int_{0}^{1} \left[ \frac{y^{2}}{2} \right]_{0}^{1-x} dx$$

$$= 5 \int_{0}^{1} (1-x)^{2} dx$$

$$= 5 \left[ \frac{(1-x)^{3}}{-3} \right]_{0}^{1} = \frac{5}{3} \dots (1)$$

Consider 
$$\int M dx + N dy = \int_{OA} + \int_{AB} + \int_{BO}$$

Along OA,  $y = 0 \Rightarrow dy = 0$ , x varies from 0 to 1

$$\therefore \int_{0.4} M dx + N dy = \int_0^1 3x^2 dx = [x^3]_0^1 = 1$$

Along AB, 
$$y = 1 - x \Rightarrow dy = -dx$$
 and x varies from 1 to 0

$$\therefore \int_{AB} M \, dx + N \, dy = \int_{1}^{0} [3x^{2} - 8(1 - x)^{2} - 4(1 - x) + 6x(1 - x)] dx$$

$$= \left[ \frac{3x^{3}}{3} - \frac{8(1 - x)^{3}}{-3} - \frac{4(1 - x)^{2}}{-2} + 3x^{2} - 2x^{3} \right]_{1}^{0}$$

$$= \frac{8}{3} + 2 - 1 - 3 + 2 = \frac{8}{3}$$

Along BO,  $x = 0 \Rightarrow dx = 0$  and y varies from 1 to 0

$$\therefore \int_{BO} M \, dx + N \, dy = \int_{1}^{0} 4y \, dy = [2y^{2}]_{1}^{0} = -2$$

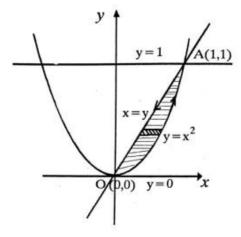
$$\therefore \int_{C} M \, dx + N \, dy = 1 + \frac{8}{3} - 2 = \frac{5}{3} \dots (2)$$

∴ From (1) and (2)

$$\therefore \int_{C} M dx + N dy = \iint_{R} \left( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy$$

Hence Green's theorem is verified.

Example: 2.65 Verify Green's theorem in the XY -plane for  $\int_{C} (xy+y^2)dx + x^2dy$  where C is the closed curve of the region bounded by  $y=x,y=x^2$ . Solution:



We have to prove that  $\int_{C} M dx + N dy = \iint_{R} \left( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy$ 

Here, 
$$M = xy + y^2$$
 and  $N = x^2$   

$$\Rightarrow \frac{\partial M}{\partial y} = x + 2y \qquad \Rightarrow \frac{\partial N}{\partial x} = 2x$$

R.H.S = 
$$\iint\limits_{R} \left( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx \, dy$$

#### Limits:

x varies from y to  $\sqrt{y}$ 

y varies from 0 to 1

$$\therefore \iint_{\mathbb{R}} \left( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx \, dy = \int_{0}^{1} \int_{y}^{\sqrt{y}} 2x - (x + 2y) \, dx \, dy$$

$$= \int_{0}^{1} \left[ \frac{x^{2}}{2} - 2xy \right]_{y}^{\sqrt{y}} \, dy$$

$$= \int_{0}^{1} \left( \frac{y}{2} - 2y\sqrt{y} \right) - \left( \frac{y^{2}}{2} - 2y^{2} \right) dy$$

$$= \int_{0}^{1} \left( \frac{y}{2} - 2y^{\frac{3}{2}} + 3\frac{y^{2}}{2} \right) \, dy$$

$$= \left[ \frac{y^{2}}{2} - \frac{4y^{\frac{5}{2}}}{5} + \frac{y^{3}}{2} \right]_{0}^{1}$$

$$= \frac{1}{4} - \frac{4}{5} + \frac{1}{2} = -\frac{1}{20}$$

$$L.H.S = \int_{C} M dx + N dy$$

Consider 
$$\int M dx + N dy = \int_{OA} + \int_{AO}$$

Along OA,  $y = x^2 \implies dy = 2x dx$ , x varies from 0 to 1

$$\therefore \int_{OA} M \, dx + N \, dy = \int_0^1 [(x(x^2) + (x^2)^2) dx + x^2 \cdot 2x \, dx]$$

$$= \int_0^1 (3x^3 + x^4) \, dx$$

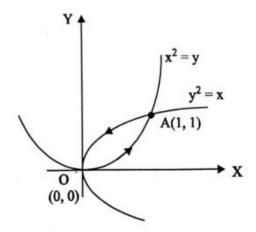
$$= \left[ \frac{3x^4}{4} + \frac{x^5}{5} \right]_0^1$$

$$= \frac{3}{4} + \frac{1}{5} = \frac{19}{20}$$

Along A0,  $y = x \Rightarrow dy = dx$  and x varies from 1 to 0

$$\therefore \int_{0.0}^{\infty} M \, dx + N \, dy = \int_{1}^{0} (x^{2} + x^{2}) dx + x^{2} \, dx$$
$$= \int_{1}^{0} 3x^{2} dx = [x^{3}]_{1}^{0} = -1$$
$$\text{L.H.S} = \int_{0}^{\infty} M \, dx + N \, dy = \frac{19}{20} - 1 = -\frac{1}{20}$$

Example: 2.66 Verify Green's theorem in the plane for  $\int_{c}^{c} (3x^2 - 8y^2) dx + (4y - 6xy) dy$  where C is the boundary of the region defined by  $y = x^2$ ,  $x = y^2$ . Solution:



We have to prove that 
$$\int_{C} M dx + N dy = \iint_{R} \left( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy$$

Here, 
$$M = 3x^2 - 8y^2$$
 and  $N = 4y - 6xy$ 

$$\Rightarrow \frac{\partial M}{\partial y} = -16y \qquad \Rightarrow \frac{\partial N}{\partial x} = -6y$$

R.H.S = 
$$\iint\limits_{R} \ \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) dx \ dy$$

### Limits:

x varies from  $y^2$  to  $\sqrt{y}$ 

y varies from 0 to 1

$$\therefore \iint_{\mathbb{R}} \left( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx \, dy = \int_{0}^{1} \int_{y^{2}}^{\sqrt{y}} (-6y + 16y) \, dx \, dy$$

$$= \int_{0}^{1} \left[ 10xy \right]_{y^{2}}^{\sqrt{y}} dy$$

$$= 10 \int_{0}^{1} \left( y\sqrt{y} - y^{3} \right) dy$$

$$= 10 \left[ \frac{y^{\frac{5}{2}}}{\frac{5}{2}} - \frac{y^{4}}{4} \right]_{0}^{1}$$

$$= 10 \left( \frac{2}{5} - \frac{1}{4} \right) = \frac{3}{2}$$

$$L.H.S = \int_{c} M dx + N dy$$

Consider 
$$\int M dx + N dy = \int_{QA} + \int_{AQ}$$

Along OA,  $y = x^2 \implies dy = 2x \, dx$ , x varies from 0 to 1

$$= \left[ -20\frac{x^5}{5} + 8\frac{x^4}{4} + 3\frac{x^3}{3} \right]_0^1$$
$$= -4 + 2 + 1 = -1$$

Along A0,  $x = y^2 \Rightarrow dx = 2ydy$  and y varies from 1 to 0

$$\therefore \int_{A_0} M \, dx + N \, dy = \int_1^0 (3y^4 - 8y^2) 2y \, dy + (4y - 6yy^2) \, dy$$

$$= \int_1^0 (6y^5 - 16y^3 + 4y - 6y^3) \, dx$$

$$= \int_1^0 (6y^5 - 22y^3 + 4y) \, dx$$

$$= \left[ 6\frac{y^6}{6} - 22\frac{y^4}{4} + 4\frac{y^2}{2} \right]_1^0$$

$$= 0 - \left[ 1 - \frac{11}{2} + 2 \right]$$

$$= - \left( 3 - \frac{11}{2} \right) = \frac{5}{2}$$

L.H.S = 
$$\int_{c} M dx + N dy = -1 + \frac{5}{2} = \frac{3}{2}$$

Hence Green's theorem is verified.

Example: 2.67 Verify Green's theorem in the plane for the integral  $\int_{c}^{c} (x-2y)dx + xdy$  taken around the circle  $x^2 + y^2 = 1$ .

Solution:

We have to prove that 
$$\int_{c} M dx + N dy = \iint_{R} \left( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy$$

Here, M = x - 2y and N = x

$$\Rightarrow \frac{\partial M}{\partial y} = -2 \qquad \Rightarrow \frac{\partial N}{\partial x} = 1$$

R.H.S = 
$$\iint\limits_{\mathbb{R}} \left( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx \, dy$$

$$\therefore \iint_{R} \left( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx \, dy = \iint_{R} (1+2) dx dy$$

$$= 3 \iint_{R} dx dy$$

$$= 3 \text{ (Area of the circle)}$$

$$= 3\pi r^{2}$$

$$= 3\pi \quad (\because radius = 1)$$

L.H.S = 
$$\int_{c} M dx + N dy$$
Given C is  $x^{2} + y^{2} = 1$ 

The parametric equation of circle is

$$x = \cos \theta, \ y = \sin \theta$$
$$dx = -\sin \theta d\theta, \ dy = \cos \theta \ d\theta$$

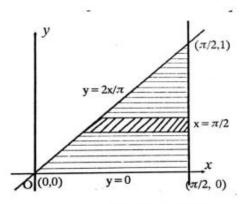
Where  $\theta$  varies from 0 to  $2\pi$ 

Hence Green's theorem is verified.

# Example: 2.68 Using Green's theorem evaluate $\int (y - \sin x) dx + \cos x dy$ where C is the triangle

bounded by y = 0,  $x = \frac{\pi}{2}$ ,  $y = \frac{2x}{\pi}$ .

Solution:



We have to prove that  $\int_{C} M dx + N dy = \iint_{R} \left( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy$ 

Here, 
$$M = y - \sin x$$
 and  $N = \cos x$ 

$$\Rightarrow \frac{\partial M}{\partial y} = 1 - 0 \qquad \Rightarrow \frac{\partial N}{\partial x} = -\sin x$$

#### Limits:

x varies from  $\frac{y\pi}{2}$  to  $\frac{\pi}{2}$ 

y varies from 0 to 1

Hence 
$$\int_{c}^{c} (y - \sin x) dx + \cos x \, dy = \int_{0}^{1} \int_{\frac{y\pi}{2}}^{\frac{\pi}{2}} (-\sin x - 1) \, dx \, dy$$

$$= \int_{0}^{1} (\cos x - x) \frac{\pi}{\frac{y\pi}{2}} \, dy$$

$$= \int_{0}^{1} \left[ \left( \cos \frac{\pi}{2} - \frac{\pi}{2} \right) - \left( \cos \left( \frac{y\pi}{2} \right) - \frac{y\pi}{2} \right) \right] \, dy$$

$$= \int_{0}^{1} \left[ 0 - \frac{\pi}{2} - \cos \frac{y\pi}{2} + \frac{y\pi}{2} \right] \, dy$$

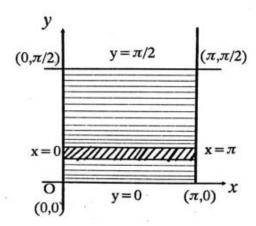
$$= \left[ -\frac{\pi}{2} y - \frac{\sin \frac{y\pi}{2}}{\frac{\pi}{2}} + \frac{\pi}{2} \frac{y^{2}}{2} \right]_{0}^{1}$$

$$= -\frac{\pi}{2} - \frac{2}{\pi} \sin \left( \frac{\pi}{2} \right) + \frac{\pi}{4}$$

$$= -\frac{\pi}{2} - \frac{2}{\pi} + \frac{\pi}{4}$$

$$= -\frac{\pi}{4} - \frac{2}{\pi} = -\left[ \frac{\pi}{4} + \frac{2}{\pi} \right]$$

Example: 2.69 Evaluate by Green's theorem  $\int_{c}^{c} \left[e^{-x}(\sin y \, dx + \cos y \, dy)\right]$  where C being the rectangle with vertices  $(0,0), (\pi,0), \left(\pi,\frac{\pi}{2}\right)$  and  $\left(0,\frac{\pi}{2}\right)$ . Solution:



We have to prove that  $\int_{0}^{\infty} M dx + N dy = \iint_{R}^{\infty} \left( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy$ 

Here, 
$$M = e^{-x} \sin y$$
 and  $N = e^{-x} \cos y$   

$$\Rightarrow \frac{\partial M}{\partial y} = e^{-x} \cos y \qquad \Rightarrow \frac{\partial N}{\partial x} = -e^{-x} \cos y$$

#### Limits:

x varies from 0 to  $\pi$ 

y varies from 0 to  $\frac{\pi}{2}$ 

Example: 2.70 Prove that the area bounded by a simple closed curve C is given by  $\frac{1}{2} \int_{C} (x dy - y dx).$  Hence find the area of the ellipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  by using Green's theorem.

Solution:

By Green theorem, 
$$\int_{c} M dx + N dy = \iint_{R} \left( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy$$

Let 
$$M = -y$$
 and  $N = x$ 

$$\Rightarrow \frac{\partial M}{\partial y} = -1 \qquad \Rightarrow \frac{\partial N}{\partial x} = 1$$

$$\therefore \int_{c} (xdy - ydx) = \iint_{R} (1+1) dx dy$$

$$= 2 \iint_{C} dx dy = 2 \text{ (Area enclosed by C)}$$

$$\therefore$$
 Area enclosed by  $C = \frac{1}{2} \int_{-\infty}^{\infty} (xdy - ydx)$ 

Equation of ellipse in parametric form is  $x = a \cos \theta$  and  $y = b \sin \theta$  where  $0 \le \theta \le 2\pi$ .

$$\therefore \text{ Area of the ellipse } = \frac{1}{2} \int_0^{2\pi} (a\cos\theta)(b\cos\theta) - (b\sin\theta)(-a\sin\theta) \ d\theta$$
$$= \frac{1}{2} ab \int_0^{2\pi} (\cos^2\theta + \sin^2\theta) \ d\theta$$
$$= \frac{1}{2} ab \int_0^{2\pi} d\theta = \frac{1}{2} ab \left[\theta\right]_0^{2\pi} = \pi ab$$

#### Exercise: 2.4

- 1. Using Green's theorem in the plane, evaluate  $\int_{c}^{c} (x^2 y^2) dx + 2xy dy$  where C is the closed curve of the region bounded by  $y = x^2$  and  $y^2 = x$  Ans:  $\frac{3}{5}$
- 2. Find by Green's theorem the value of  $\int_{c}^{c} (x^2ydx + ydy)$  along the closed curve formed

by 
$$y = x^2$$
 and  $y^2 = x$  between (0,0) to (1,1) Ans:  $\frac{1}{28}$ 

3. Verify Green's theorem for the integral  $\int_{c} [(x-y)dx + (x+y)dy]$  taken around the boundary area in the first quadrant between the curves  $y = x^{2}$  and  $y^{2} = x$ .

Ans: Common value =  $\frac{2}{3}$ 

- 4. Find the area of a circle of radius 'a' using Green's theorem. Ans:  $\pi a^2$
- 5. Evaluate  $\int [(\sin x y)dx \cos x dy]$ , where C is the triangle with vertices

 $(0,0), \left(\frac{\pi}{2},0\right)$  and  $\left(\frac{\pi}{2},1\right)$ 

Ans:  $\frac{2}{\pi} + \frac{\pi}{4}$ 

6. Using Green's theorem, find the value of  $\int_{c}^{c} [(xy - x^2)dx + x^2ydy]$  along the closed

curve C formed by y = 0, x = 1 and y = x

Ans:  $-\frac{1}{12}$ 

7. Verify Green's theorem for  $\int_{c}^{c} [(x^2 - y^2)dx + 2xydy]$ , where C is the boundary of the rectangle in the xoy – plane bounded by the lines x = 0, x = a, y = 0 and y = b.

Ans: Common value =  $2ab^2$ 

8. Verify Green's theorem for  $\int_{c}^{c} [(2x-y)dx + (x+y)dy]$ , where C is the boundary of the

Circle  $x^2 + y^2 = a^2$  in the xoy – plane.

Ans:  $2\pi a^2$