

UNIT-IV

COMPLEX INTEGRATION

4.1 LINE INTEGRAL AND CONTOUR INTEGRAL

If f(z) is a continuous function of the complex variable z = x + iy and C is any continuous curve connecting two points A and B on the z – plane then the complex line integral of f(z) along C from A to B is denoted by $\int_C f(z)dz$

When C is simple closed curve, then the complex integral is also called as a contour integral and is denoted as $\oint_C f(z)dz$. The curve C is always take in the anticlockwise direction.

Note: If the direction of C is reversed (clockwise), the integral changes its sign

$$(ie) \oint_{C} f(z)dz = -\oint f(z)dz$$

Standard theorems:

- 1. Cauchy's Integral theorem (or) Cauchy's Theorem (or) Cauchy's Fundamental Theorem Statement: If f(z) is analytic and its derivative f'(z) is continuous at all points inside and on a simple closed curve C then $\oint_C f(z) dz = 0$
- 2. Extension of Cauchy's integral theorem (or) Cauchy's theorem for multiply connected Region Statement: If f(z) is analytic at all points inside and on a multiply connected region whose outer boundary is C and inner boundaries are $C_1, C_2, ..., C_n$ then

$$\int_{C} f(z)dz = \int_{C} f(z)dz + \int_{C_{2}} f(z)dz + \dots + \int_{C_{n}} f(z)dz$$

3. Cauchy's integral formula

Statement: If f(z) is analytic inside and on a simple closed curve C of a simply connected region R and if 'a' is any point interior to C, then

$$f(a) = \frac{1}{2\pi i} \int_{c} \frac{f(z)}{z - a} dz$$
(OR)

$$\int_{C} \frac{f(x)}{z - a} dz = 2\pi i f(a),$$

the integration around C being taken in the positive direction.

4. Cauchy's Integral formula for derivatives

Statement: If f(z) is analytic inside and on a simple closed curve C of a simply connected Region R and if 'a' is any point interior to C, then

$$\int_{C} \frac{f(z)}{(z-a)^2} dz = 2\pi i f'(a)$$

$$\int_c \frac{f(z)}{(z-a)^3} dz = 2\pi i f''(a)$$

In general, $\int_c \frac{f(z)}{(z-a)^n} dz = 2\pi i f^{(n-1)}(a)$

Problems based on Cauchy's Integral Theorem

Example: 4.1 Evaluate $\int_0^{3+i} z^2 dz$ along the line joining the points (0,0) and (3,1)

Solution:

Given
$$\int_0^{3+i} z^2 dz$$

Let z = x + iy

Here z = 0 corresponds to (0, 0) and z = 3 + i corresponds to (3, 1)

The equation of the line joining (0, 0) and (3, 1) is

$$y = \frac{x}{3} \Rightarrow x = 3y$$

Now
$$z^2 dz = (x + iy)^2 (dx + idy)$$

$$= [x^2 - y^2 + i2xy][dx + idy]$$

$$= [(x^2 - y^2) + i2xy][dx + idy]$$

$$= [(x^2 - y^2)dx - 2xydy] + i[2xydx + (x^2 - y^2)dy]$$

Since
$$x = 3y \Rightarrow dx = 3dy$$

$$z^{2}dz = [8y^{2}(3dy) - 6y^{2}dy] + i[18y^{2}dy + 8y^{2}dy]$$

$$= 18y^{2}dy + i26y^{2}dy$$

$$\therefore \int_{0}^{3+i} z^{2}dz = \int_{0}^{i} [18y^{2} + i26y^{2}]dy$$

$$= \left[18\frac{y^{2}}{3} + i26\frac{y^{3}}{3}\right]_{0}^{i}$$

$$= 6 + i\frac{26}{3}$$

Example: 4.2 Evaluate
$$\int_0^{2+i} (x^2 - iy) dz$$

Solution:

Let
$$z = x + iy$$

Here z = 0 corresponds to (0, 0) and z = 2 + i corresponds to (2, 1)

Now
$$(x^2 - iy)dz = (x^2 - iy)(dx + idy)$$

= $x^2dx + y dy + i(x^2dy - y dx)$

Along the path
$$y = x^2 \Rightarrow dy = 2xdx$$

$$(x^2 - iy)dz = (x^2dx + 2x^3dx) + i(2x^3dx - x^2dx)$$

$$\int_0^{2+i} (x^2 - iy) dz = \int_0^2 (x^2 + 2x^3) dx + i(2x^3 - x^2) dx$$
$$= \left[\frac{x^3}{3} + \frac{2x^4}{4} \right]_0^2 + i \left[\frac{2x^4}{4} = \frac{x^3}{3} \right]_0^2$$
$$= \left(\frac{8}{3} + \frac{16}{2} \right) + i \left(\frac{16}{2} - \frac{8}{3} \right)$$
$$= \frac{32}{2} + i \frac{16}{2}$$

Example: 4.3 Evaluate $\int_c^{\infty} e^{\frac{1}{z}} dz$, where C is |z| = 2 Solution:

Let $f(z) = e^{\frac{1}{z}}$ clearly f(z) is analytic inside and on C.

Hence, by Cauchy's integral theorem we get $\int_c^{\infty} e^{\frac{1}{z}} dz = 0$

Example: 4.4 Evaluate $\int_c z^2 e^{\frac{1}{z}} dz$, where C is |z| = 1 Solution:

Given
$$\int_c z^2 e^{1/z} dz$$

$$= \int_{c} \frac{z^2}{e^{-1/z}} dz$$

$$Dr = 0 \implies z = 0$$
, We get $e^{-\frac{1}{0}} = e^{-\infty} = 0$

z = 0 lies inside |z| = 1.

Cauchy's Integral formula is

$$\int_{c} z^{2} e^{1/z} dz = 2\pi i f(0) = 0$$

Example: 4.5 Evaluate $\int_{c} \frac{1}{2z-3} dz$ where C is |z| = 1

Solution:

Given
$$\int_{c}^{\infty} \frac{1}{2z-3} dz$$

$$Dr = 0 \implies 2z - 3 = 0, \implies z = \frac{3}{2}$$

Given C is |z| = 1

$$\Rightarrow |z| = \left|\frac{3}{2}\right| = \frac{3}{2} > 1$$

$$\therefore z = \frac{3}{2} \text{ lies outside } C$$

: By Cauchy's Integral theorem, $\int_c \frac{1}{2z-3} dz = 0$

Example: 4.6 Evaluate $\int_{c} \frac{dz}{z+4}$ where C is |z|=2

Solution:

Given
$$\int_{c} \frac{dz}{z+4}$$

$$Dr = 0 \implies z + 4 = 0 \implies z = -4$$

Given C is |z| = 2

$$\Rightarrow |z| = |-4| = 4 > 2$$

z = -4 lies outside C.

 \therefore By Cauchy's Integral Theorem, $\int_{c} \frac{dz}{z+4} = 0$

Example: 4.7 Evaluate $\int_c \frac{e^{2z}}{z^2+1} dz$, where C is $|z| = \frac{1}{2}$

Solution:

Given
$$\int_{c} \frac{e^{2z}}{z^2+1} dz$$

$$Dr = 0 \implies z^2 + 1 = 0 \implies z = \pm i$$

Given C is $|z| = \frac{1}{2}$

$$\Rightarrow |z| = |\pm i| = 1 > \frac{1}{2}$$

:: Clearly both the points $z = \pm i$ lies outside C.

 \therefore By Cauchy's Integral Theorem, $\int_{c} \frac{e^{2z}}{z^{2}+1} dz = 0$