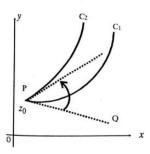
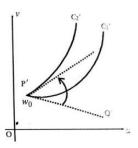


3.5 CONFORMAL MAPPING

Definition: Conformal Mapping

A transformation that preserves angels between every pair of curves through a point, both in magnitude and sense, is said to be conformal at that point.





Definition: Isogonal

A transformation under which angles between every pair of curves through a point are preserved in magnitude, but altered in sense is said to be an isogonal at that point.

Note: 3.4 (i) A mapping w = f(z) is said to be conformal at $z = z_0$, if $f'(z_0) \neq 0$.

Note: 3.4 (ii) The point, at which the mapping w = f(z) is not conformal,

(i.e.)f'(z) = 0 is called a **critical point** of the mapping.

If the transformation w = f(z) is conformal at a point, the inverse transformation $z = f^{-1}(w)$ is also conformal at the corresponding point.

The critical points of $z = f^{-1}(w)$ are given by $\frac{dz}{dw} = 0$, hence the critical point of the transformation w = f(z) are given by $\frac{dw}{dz} = 0$ and $\frac{dz}{dw} = 0$,

Note: 3.4 (iii) Fixed points of mapping.

Fixed or invariant point of a mapping w = f(z) are points that are mapped onto themselves, are "Kept fixed" under the mapping. Thus they are obtained from w = f(z) = z.

The identity mapping w = z has every point as a fixed point. The mapping $w = \bar{z}$ has infinitely many fixed points.

 $w = \frac{1}{z}$ has two fixed points, a rotation has one and a translation has none in the complex plane.

Some standard transformations

Translation:

The transformation w = C + z, where C is a complex constant, represents a translation.

Let
$$z = x + iy$$

 $w = u + iv$ and $C = a + ib$
Given $w = z + C$,
 $(i.e.) u + iv = x + iy + a + ib$
 $\Rightarrow u + iv = (x + a) + i(y + b)$

Equating the real and imaginary parts, we get u = x + a, v = y + b

Hence the image of any point p(x, y) in the z-plane is mapped onto the point p'(x + a, y + b) in the w-plane. Similarly every point in the z-plane is mapped onto the w plane.

If we assume that the w-plane is super imposed on the z-plane, we observe that the point (x, y) and hence any figure is shifted by a distance $|C| = \sqrt{a^2 + b^2}$ in the direction of C i.e., translated by the vector representing C.

Hence this transformation transforms a circle into an equal circle. Also the corresponding regions in the z and w planes will have the same shape, size and orientation.

Problems based on w = z + k

Example: 3.36 What is the region of the w plane into which the rectangular region in the Z plane bounded by the lines x = 0, y = 0, x = 1 and y = 2 is mapped under the transformation w = z + (2 - i)

Solution:

Given
$$w = z + (2 - i)$$

(i.e.) $u + iv = x + iy + (2 - i) = (x + 2) + i(y - 1)$

Equating the real and imaginary parts

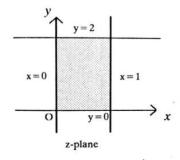
$$u = x + 2, v = y - 1$$

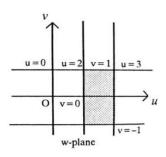
Given boundary lines are

transformed boundary lines are

$$x = 0$$
 $u = 0 + 2 = 2$
 $y = 0$ $v = 0 - 1 = -1$
 $x = 1$ $u = 1 + 2 = 3$
 $y = 2$ $v = 2 - 1 = 1$

Hence, the lines x = 0, y = 0, x = 1, and y = 2 are mapped into the lines u = 2, v = -1, u = 3, and v = 1 respectively which form a rectangle in the w plane.





Example: 3.37 Find the image of the circle |z| = 1 by the transformation w = z + 2 + 4i Solution:

Given
$$w = z + 2 + 4i$$

(i.e.)
$$u + iv = x + iy + 2 + 4i$$

= $(x + 2) + i(y + 4)$

Equating the real and imaginary parts, we get

$$u = x + 2, v = y + 4,$$

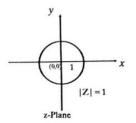
$$x = u - 2, y = v - 4,$$

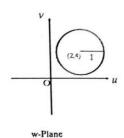
Given |z| = 1

$$(i.e.) x^2 + y^2 = 1$$

$$(u-2)^2 + (v-4)^2 = 1$$

Hence, the circle $x^2 + y^2 = 1$ is mapped into $(u - 2)^2 + (v - 4)^2 = 1$ in w plane which is also a circle with centre (2, 4) and radius 1.





2. Magnification and Rotation

The transformation w = cz, where c is a complex constant, represents both magnification and rotation.

This means that the magnitude of the vector representing z is magnified by a = |c| and its direction is rotated through angle $\alpha = amp(c)$. Hence the transformation consists of a magnification and a rotation.

Problems based on w = cz

Example: 3.38 Determine the region 'D' of the w-plane into which the triangular region D enclosed by the lines x = 0, y = 0, x + y = 1 is transformed under the transformation w = 2z. Solution:

Let
$$w = u + iv$$

$$z = x + iy$$
Given $w = 2z$

$$u + iv = 2(x + iy)$$

$$u + iv = 2x + i2y$$

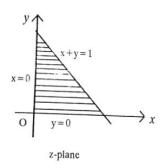
$$u = 2x \Rightarrow x = \frac{u}{2}, v = 2y \Rightarrow y = \frac{v}{2}$$

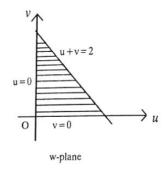
Given region (D) whose		Transformed region D' whose
boundary lines are		boundary lines are
x = 0	\Rightarrow	u = 0
y = 0	\Rightarrow	v = 0
x + y = 1	⇒	$\frac{u}{2} + \frac{v}{2} = 1[\because x = \frac{u}{2}, y = \frac{v}{2}]$
		(i.e.) u + v = 2

In the z plane the line x = 0 is transformed into u = 0 in the w plane.

In the z plane the line y = 0 is transformed into v = 0 in the w plane.

In the z plane the line x + y =is transformed intou + v = 2 in the w plane.





Example: 3.39 Find the image of the circle $|z| = \lambda$ under the transformation w = 5z. Solution:

Given
$$w = 5z$$

 $|w| = 5|z|$
i.e., $|w| = 5\lambda$ $[\because |z| = \lambda]$

Hence, the image of $|z| = \lambda$ in the z plane is transformed into $|w| = 5\lambda$ in the w plane under the transformation w = 5z.

Example: 3.40 Find the image of the circle |z| = 3 under the transformation w = 2z

[A.U N/D 2012] [A.U N/D 2016 R-13]

Solution:

Given
$$w = 2z$$
, $|z| = 3$
 $|w| = (2)|z|$

$$= (2)(3)$$
, Since $|z| = 3$
= 6

Hence, the image of |z| = 3 in the z plane is transformed into |w| = 6 w plane under the transformation w = 2z.

Example: 3.41 Find the image of the region y > 1 under the transformation

$$w = (1 - i)z$$
. [Anna, May – 1999]

Solution:

Given
$$w = (1 - i)z$$
.
 $u + v = (1 - i)(x + iy)$
 $= x + iy - ix + y$
 $= (x + y) + i(y - x)$
i.e., $u = x + y$, $v = y - x$
 $u + v = 2y$ $u - v = 2x$
 $y = \frac{u + v}{2}$ $x = \frac{u - v}{2}$

Hence, image region y > 1 is $\frac{u+v}{2} > 1$ i.e., u + v > 2 in the w plane.

Problems based on
$$w = \frac{1}{z}$$

Example: 3.42 Find the image of |z-2i|=2 under the transformation $w=\frac{1}{z}$

Solution:

Given
$$|z - 2i| = 2$$
(1) is a circle.
Centre = (0,2)
radius = 2
Given $w = \frac{1}{z} = > z = \frac{1}{w}$

(1)
$$\Rightarrow \left| \frac{1}{w} - 2i \right| = 2$$

$$\Rightarrow |1 - 2wi| = 2|w|$$

$$\Rightarrow |1 - 2(u + iv)i| = 2|u + iv|$$

$$\Rightarrow |1 - 2ui + 2v| = 2|u + iv|$$

$$\Rightarrow |1 + 2v - 2ui| = 2|u + iv|$$

$$\Rightarrow \sqrt{(1 + 2v)^2 + (-2u)^2} = 2\sqrt{u^2 + v^2}$$

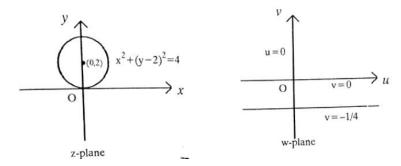
$$\Rightarrow (1 + 2v)^2 + 4u^2 = 4(u^2 + v^2)$$

$$\Rightarrow 1 + 4v^2 + 4v + 4u^2 = 4(u^2 + v^2)$$

$$\Rightarrow 1 + 4v = 0$$

$$\Rightarrow v = -\frac{1}{4}$$

Which is a straight line in w plane.

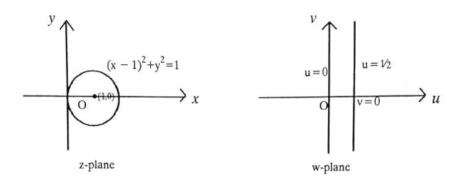


Example: 3.43 Find the image of the circle |z - 1| = 1 in the complex plane under the mapping $w = \frac{1}{z}$ [A.U N/D 2009] [A.U M/J 2016 R-8]

Solution:

Given
$$|z-1| = 1$$
(1) is a circle.
Centre =(1,0)
radius = 1
Given $w = \frac{1}{z} \Rightarrow z = \frac{1}{w}$
(1) $\Rightarrow \left|\frac{1}{w} - 1\right| = 1$
 $\Rightarrow |1 - w| = |w|$
 $\Rightarrow |1 - (u + iv)| = |u + iv|$
 $\Rightarrow |1 - u + iv| = |u + iv|$
 $\Rightarrow \sqrt{(1 - u)^2 + (-v)^2} = \sqrt{u^2 + v^2}$
 $\Rightarrow (1 - u)^2 + v^2 = u^2 + v^2$
 $\Rightarrow 1 + u^2 - 2v + v^2 = u^2 + v^2$
 $\Rightarrow 2u = 1$
 $\Rightarrow u = \frac{1}{2}$

which is a straight line in the w- plane



Example: 3.44 Find the image of the infinite strips

(i)
$$\frac{1}{4} < y < \frac{1}{2}$$
 (ii) $0 < y < \frac{1}{2}$ under the transformation $w = \frac{1}{z}$

Solution:

Given
$$w = \frac{1}{z}$$
 (given)
i.e., $z = \frac{1}{w}$

$$z = \frac{1}{u+iv} = \frac{u-iv}{(u+iv)+(u-iv)} = \frac{u-iv}{u^2+v^2}$$

$$x + iy = \frac{u-iv}{u^2+v^2} = \left[\frac{u}{u^2+v^2}\right] + i\left[\frac{-v}{u^2+v^2}\right]$$

$$x = \frac{u}{u^2+v^2} \dots (1), y = \frac{-v}{u^2+v^2} \dots (2)$$

(i) Given strip is
$$\frac{1}{4} < y < \frac{1}{2}$$

when
$$y = \frac{1}{4}$$

$$\frac{1}{4} = \frac{-v}{u^2 + v^2}$$
 by (2)

$$\Rightarrow u^2 + v^2 = -4v$$

$$\Rightarrow u^2 + v^2 + 4v = 0$$

$$\Rightarrow u^2 + (v+2)^2 = 4$$

which is a circle whose centre is at (0, -2) in the w plane and radius is 2k.

when
$$y = \frac{1}{2}$$

$$\frac{1}{2} = \frac{-v}{u^2 + v^2} \qquad \text{by (2)}$$

$$\Rightarrow u^2 + v^2 = -2v$$

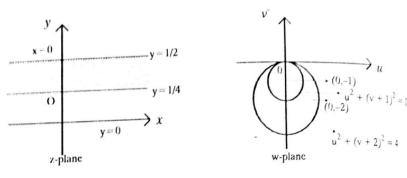
$$\Rightarrow u^2 + v^2 + 2v = 0$$

$$\Rightarrow u^2 + (v+1)^2 = 0$$

$$\Rightarrow u^2 + (v+1)^2 = 1 \qquad \dots (3)$$

which is a circle whose centre is at (0, -1) in the w plane and unit radius

Hence the infinite strip $\frac{1}{4} < y < \frac{1}{2}$ is transformed into the region in between circles $u^2 + (v+1)^2 = 1$ and $u^2 + (v+2)^2 = 4$ in the w plane.



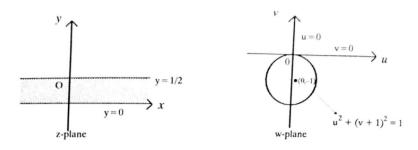
ii) Given strip is $0 < y < \frac{1}{2}$

when
$$y = 0$$

$$\Rightarrow v = 0$$
 by (2)

when
$$y = \frac{1}{2}$$
 we get $u^2 + (v + 1)^2 = 1$ by (3)

Hence, the infinite strip $0 < y < \frac{1}{2}$ is mapped into the region outside the circle $u^2 + (v + 1)^2 = 1$ in the lower half of the w plane.



Example: 3.45 Find the image of x = 2 under the transformation $w = \frac{1}{z}$. [Anna – May 1998] Solution:

Given
$$w = \frac{1}{z}$$

i.e., $z = \frac{1}{w}$
 $z = \frac{1}{u+iv} = \frac{u-iv}{(u+iv)+(u-iv)} = \frac{u-iv}{u^2+v^2}$
 $x + iy = \left[\frac{u}{u^2+v^2}\right] + i\left[\frac{-v}{u^2+v^2}\right]$
i.e., $x = \frac{u}{u^2+v^2} \dots (1), y = \frac{-v}{u^2+v^2} \dots (2)$

Given x = 2 in the z plane.

which is a circle whose centre is $(\frac{1}{4}, 0)$ and radius $\frac{1}{4}$

x = 2 in the z plane is transformed into a circle in the w plane.

Problems based on critical points of the transformation

Example: 3.54 Find the critical points of the transformation $w^2 = (z - \alpha)(z - \beta)$.

[A.U Oct., 1997] [A.U N/D 2014] [A.U M/J 2016 R-13]

Solution:

Given
$$w^2 = (z - \alpha) (z - \beta)$$
 ...(1)

Critical points occur at $\frac{dw}{dz} = 0$ and $\frac{dz}{dw} = 0$

Differentiation of (1) w. r. to z, we get

$$\Rightarrow 2w \frac{dw}{dz} = (z - \alpha) + (z - \beta)$$

$$= 2z - (\alpha + \beta)$$

$$\Rightarrow \frac{dw}{dz} = \frac{2z - (\alpha + \beta)}{2w} \qquad ...(2)$$
Case $(i) \frac{dw}{dz} = 0$

$$\Rightarrow \frac{2z - (\alpha + \beta)}{2w} = 0$$
$$\Rightarrow 2z - (\alpha + \beta) = 0$$

$$\Rightarrow 2z = \alpha + \beta$$

$$\Rightarrow z = \frac{\alpha + \beta}{2}$$

Case
$$(ii)\frac{dz}{dw} = 0$$

$$\Rightarrow \frac{2w}{2z - (\alpha + \beta)} = 0$$

$$\Rightarrow \frac{w}{z - \frac{\alpha + \beta}{2}} = 0$$

$$\Rightarrow w = 0 \Rightarrow (z - \alpha)(z - \beta) = 0$$

$$\Rightarrow z = \alpha, \beta$$

 \therefore The critical points are $\frac{\alpha+\beta}{2}$, α and β .

Example: 3.55 Find the critical points of the transformation $w = z^2 + \frac{1}{z^2}$. [A.U A/M 2017 R-13] Solution:

Given
$$w = z^2 + \frac{1}{z^2}$$
 ... (1)

Critical points occur at $\frac{dw}{dz} = 0$ and $\frac{dz}{dw} = 0$

Differentiation of (1) w. r. to z, we get

$$\Rightarrow \frac{dw}{dz} = 2z - \frac{2}{z^3} = \frac{2z^4 - 2}{z^3}$$

Case
$$(i)\frac{dw}{dz} = 0$$

$$\Rightarrow \frac{2z^4 - 2}{z^3} = 0 \Rightarrow 2z^4 - 2 = 0$$
$$\Rightarrow z^4 - 1 = 0$$
$$\Rightarrow z = \pm 1, \pm i$$

Case
$$(ii)\frac{dz}{dw} = 0$$

$$\Rightarrow \frac{z^3}{2z^4 - 2} = 0 \Rightarrow z^3 = 0 \Rightarrow z = 0$$

 \therefore The critical points are ± 1 , $\pm i$, 0

Example: 3.56 Find the critical points of the transformation $w = z + \frac{1}{z}$

Given
$$w = z + \frac{1}{z}$$
 ...(1)

Critical points occur at $\frac{dw}{dz} = 0$ and $\frac{dz}{dw} = 0$

Differentiation of (1) w. r. to z, we get

$$\Rightarrow \frac{dw}{dz} = 1 - \frac{1}{z^2} = \frac{z^2 - 1}{z^2}$$

Case
$$(i)\frac{dw}{dz} = 0$$

$$\Rightarrow \frac{z^2 - 1}{z^3} = 0 \Rightarrow z^2 - 1 = 0 \Rightarrow z = \pm 1$$

Case
$$(ii)\frac{dz}{dw} = 0$$

$$\Rightarrow \frac{z^3}{z^2 - 1} = 0 \Rightarrow z^2 = 0 \Rightarrow z = 0$$

 \therefore The critical points are $0, \pm 1$.