

Problems based on Analytic functions – necessary conditions Cauchy – Riemann equations

Example: 3.6 Show that the function f(z) = xy + iy is continuous everywhere but not differentiable anywhere.

Solution:

Given
$$f(z) = xy + iy$$

(i.e.) $u = xy, v = y$

x and y are continuous everywhere and consequently u(x,y)=xy and v(x,y)=y are continuous everywhere.

Thus f(z) is continuous everywhere.

But

u = xy	v = y
$u_x = y$	$v_x = 0$
$u_y = x$	$v_y = 1$
$u_x \neq v_y$	$u_y \neq -v_x$

C-R equations are not satisfied.

Hence, f(z) is not differentiable anywhere though it is continuous everywhere.

Example: 3.7 Show that the function $f(z) = \overline{z}$ is nowhere differentiable. [A.U N/D 2012] Solution:

Given
$$f(z) = \overline{z} = x - iy$$

i.e., $u = x$ $v = -y$
 $\frac{\partial u}{\partial x} = 1$ $\frac{\partial v}{\partial x} = 0$
 $\frac{\partial u}{\partial y} = 0$ $\frac{\partial v}{\partial y} = -1$

 $u_x \neq v_y$

C-R equations are not satisfied anywhere.

Hence, $f(z) = \overline{z}$ is not differentiable anywhere (or) nowhere differentiable.

Example: 3.8 Show that $f(z) = |z|^2$ is differentiable at z = 0 but not analytic at z = 0. Solution:

Let
$$z = x + iy$$

 $\overline{z} = x - iy$
 $|z|^2 = z \overline{z} = x^2 + y^2$

$$(i.e.) f(z) = |z|^2 = (x^2 + y^2) + i0$$

$$u = x^2 + y^2 \qquad v = 0$$

$$u_x = 2x \qquad v_x = 0$$

$$u_y = 2y \qquad v_y = 0$$

So, the C-R equations $u_x = v_y$ and $u_y = -v_x$ are not satisfied everywhere except at z = 0.

So, f(z) may be differentiable only at z = 0.

Now, $u_x = 2x$, $u_y = 2y$, $v_x = 0$ and $v_y = 0$ are continuous everywhere and in particular at (0,0).

Hence, the sufficient conditions for differentiability are satisfied by f(z) at z = 0.

So, f(z) is differentiable at z = 0 only and is not analytic there.

Inverse function

Let w = f(z) be a function of z and z = F(w) be its inverse function.

Then the function w = f(z) will cease to be analytic at $\frac{dz}{dw} = 0$ and z = F(w) will be so, at point where $\frac{dw}{dz} = 0$.

Example: 3.9 Show that f(z) = log z analytic everywhere except at the origin and find its derivatives. Solution:

Let
$$z = re^{i\theta}$$

$$f(z) = \log z$$

$$= \log(re^{i\theta}) = \log r + \log(e^{i\theta}) = \log r + i\theta$$

But, at the origin, r = 0. Thus, at the origin,

$$f(z) = \log 0 + i\theta = -\infty + i\theta$$

Note: $e^{-\infty} = 0$ $\log e^{-\infty} = \log 0$; $-\infty = \log 0$

So, f(z) is not defined at the origin and hence is not differentiable there.

At points other than the origin, we have

$u(r,\theta) = \log r$	$v(r,\theta)=\theta$
$u_r = \frac{1}{r}$	$v_r = 0$
$u_{\theta}=0$	$v_{\theta} = 1$

So, logz satisfies the C-R equations.

Further $\frac{1}{r}$ is not continuous at z = 0.

So, u_r , u_θ , v_r , v_θ are continuous everywhere except at z = 0. Thus log z satisfies all the sufficient conditions for the existence of the derivative except at the origin. The derivative is

$$f'(z) = \frac{u_r + iv_r}{e^{i\theta}} = \frac{\left(\frac{1}{r}\right) + i(0)}{e^{i\theta}} = \frac{1}{re^{i\theta}} = \frac{1}{z}$$

Note: $f(z) = u + iv \Rightarrow f(re^{i\theta}) = u + iv$

Differentiate w.r.to 'r', we get

$$(i.e.) e^{i\theta} f'(re^{i\theta}) = \frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r}$$

-- --

Example: 3.10 Check whether $w = \overline{z}$ is analytics everywhere. [Anna, Nov 2001] [A.U M/J 2014] Solution:

Let
$$w = f(z) = \overline{z}$$

 $u+iv = x - iy$

u = x	v = -y
$u_x = 1$	$v_x = 0$
$u_y = 0$	$v_y = -1$

 $u_x \neq v_y$ at any point p(x,y)

Hence, C-R equations are not satisfied.

:The function f(z) is nowhere analytic.

Example: 3.11 Test the analyticity of the function $w = \sin z$.

Solution:

Let
$$w = f(z) = \sin z$$

 $u + iv = \sin(x + iy)$
 $u + iv = \sin x \cos iy + \cos x \sin iy$
 $u + iv = \sin x \cosh y + i \cos x \sin hy$

Equating real and imaginary parts, we get

$u = \sin x \cosh y$	$v = \cos x \sinh y$
$u_x = \cos x \cosh y$	$v_x = -\sin x \sinh y$
$u_y = \sin x \sinh y$	$v_y = \cos x \cosh y$

$$\therefore u_x = v_y \text{ and } u_y = -v_x$$

C -R equations are satisfied.

Also the four partial derivatives are continuous.

Hence, the function is analytic.

Example: 3.12 Determine whether the function $2xy + i(x^2 - y^2)$ is analytic or not. [Anna, May 2001] Solution:

$$Let f(z) = 2xy + i(x^2 - y^2)$$

(i.e.)
$$u = 2xy v = x^2 - y^2$$

$$\frac{\partial u}{\partial x} = 2y \frac{\partial v}{\partial x} = 2x$$

$$\frac{\partial u}{\partial y} = 2x \frac{\partial v}{\partial y} = -2y$$

$$u_x \neq v_y$$
 and $u_y \neq -v_x$

C-R equations are not satisfied.

Hence, f(z) is not an analytic function.

Example: 3.13 Prove that $f(z) = \cosh z$ is an analytic function and find its derivative.

Solution:

Given
$$f(z) = \cosh z = \cos(iz) = \cos[i(x+iy)]$$

= $\cos(ix - y) = \cos ix \cos y + \sin(ix) \sin y$
 $u + iv = \cosh x \cos y + i \sinh x \sin y$

$u = \cosh x \cos y$	$v = \sinh x \sin y$
$u_x = \sinh x \cos y$	$v_x = \cosh x \sin y$
$u_y = -\cosh x \sin y$	$v_y = \sinh x \cos y$

 u_x , u_y , v_x and v_y exist and are continuous.

$$u_x = v_y$$
 and $u_y = -v_x$

C-R equations are satisfied.

f(z) is analytic everywhere.

Now,
$$f'(z) = u_x + iv_x$$

= $\sinh x \cos y + i \cosh x \sin y$
= $\sinh(x + iy) = \sinh z$

Test whether the function $f(z) = \frac{1}{2} log(x^2 + y^2 + tan^{-1} \left(\frac{y}{x}\right))$ is analytic or not.

Solution:

Given
$$f(z) = \frac{1}{2}\log(x^2 + y^2 + i\tan^{-1}\left(\frac{y}{x}\right)$$

 $(i.e.)u + iv = \frac{1}{2}\log(x^2 + y^2 + i\tan^{-1}\left(\frac{y}{x}\right)$

$u = \frac{1}{2}\log(x^2 + y^2)$	$v = \tan^{-1}\left(\frac{y}{x}\right)$
$u_x = \frac{1}{2} \frac{1}{x^2 + y^2} (2x)$	$v_x = \frac{1}{1 + \frac{y^2}{x^2}} \left[-\frac{y}{x^2} \right]$
$= \frac{1}{x^2 + y^2}$ $u_{xy} = \frac{1}{2} \frac{1}{2} \frac{1}{2} (2y)$	$=\frac{-y}{x^2+y^2}$
$u_{y} = \frac{1}{2} \frac{1}{x^{2} + y^{2}} (2y)$ $= \frac{y}{x^{2} + y^{2}}$	$v_y = \frac{1}{1 + \frac{y^2}{x^2}} \left[\frac{1}{x} \right]$
	$=\frac{x}{x^2+y^2}$

Here,
$$u_x = v_y$$
 and $u_y = -v_x$

 \Rightarrow C-R equations are satisfied

 $\Rightarrow f(z)$ is analytic.