

Unit-III

Complex Integration

ANALYTIC FUNCTIONS

3.1 INTRODUCTION

The theory of functions of a complex variable is the most important in solving a large number of Engineering and Science problems. Many complicated intergrals of real function are solved with the help of a complex variable.

3.1 (a) Complex Variable

x + iy is a complex variable and it is denoted by z.

$$(i.e.)z = x + iy \text{ where } i = \sqrt{-1}$$

3.1 (b) Function of a complex Variable

If z = x + iy and w = u + iv are two complex variables, and if for each value of z in a given region R of complex plane there corresponds one or more values of w is said to be a function z and is denoted by w = f(z) = f(x + iy) = u(x, y) + iv(x, y) where u(x, y) and v(x, y) are real functions of the real variables x and y.

Note:

(i) single-valued function

If for each value of z in R there is correspondingly only one value of w, then w is called a single valued function of z.

Example: $w = z^2, w = \frac{1}{z}$

$w = z^2$					$w = \frac{1}{z}$					
Z	1	2	-2	3	Z	1	2	-2	3	
w	1	4	4	9	w	1	$\frac{1}{2}$	$\frac{1}{-2}$	$\frac{1}{3}$	

(ii) Multiple - valued function

If there is more than one value of w corresponding to a given value of z then w is called multiple – valued function.

Example: $w = z^{1/2}$

$w = z^{1/2}$							
Z	4	9	1				
w	-2,2	3,-3	1,-1				

- (iii) The distance between two points z and z_o is $|z z_o|$
- (iv) The circle C of radius δ with centre at the point z_o can be represented by $|z z_o| = \delta$.
- (v) $|z z_o| < \delta$ represents the interior of the circle excluding its circumference.
- (vi) $|z z_o| \le \delta$ represents the interior of the circle including its circumference.
- (vii) $|z z_o| > \delta$ represents the exterior of the circle.
- (viii) A circle of radius 1 with centre at origin can be represented by |z| = 1

3.1 (c) Neighbourhood of a point z_o

Neighbourhood of a point z_o , we mean a sufficiently small circular region [excluding the points on the boundary] with centre at z_o .

$$(i.e.) |z - z_o| < \delta$$

Here, δ is an arbitrary small positive number.

3.1 (d) Limit of a Function

Let f(z) be a single valued function defined at all points in some neighbourhood of point z_o .

Then the limit of f(z) as z approaches z_o is w_o .

$$(i.e.) \lim_{z \to z_o} f(z) = w_o$$

3.1 (e) Continuity

If f(z) is said to continuous at $z = z_o$ then

$$\lim_{z \to z_o} f(z) = f(z_o)$$

If two functions are continuous at a point their sum, difference and product are also continuous at that point, their quotient is also continuous at any such point $[dr \neq 0]$

Example: 3.1 State the basic difference between the limit of a function of a real variable and that of a complex variable. [A.U M/J 2012]

Solution:

In real variable, $x \to x_0$ implies that x approaches x_0 along the X-axis (or) a line parallel to the X-axis.

In complex variables, $z \to z_0$ implies that z approaches z_0 along any path joining the points z and z_0 that lie in the z-plane.

3.1 (f) Differentiability at a point

A function f(z) is said to be differentiable at a point, $z = z_0$ if the limit

$$f(z_0) = \underset{\Delta z \to 0}{\text{Lt}} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$
 exists.

This limit is called the derivative of f(z) at the point $z = z_0$

If f(z) is differentiable at z_0 , then f(z) is continuous at z_0 . This is the necessary condition for differentiability.

Example: 3.2 If f(z) is differentiable at z_0 , then show that it is continuous at that point. Solution:

As f(z) is differentiable at z_0 , both $f(z_0)$ and $f'(z_0)$ exist finitely.

Now,
$$\lim_{z \to z_0} |f(z) - f(z_0)| = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} (z - z_0)$$

$$= \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \lim_{z \to z_0} (z - z_0)$$

$$= f'(z_0). 0 = 0$$

Hence,
$$\lim_{z \to z_0} f(z) = \lim_{z \to z_0} f(z_0) = f(z_0)$$

As $f(z_0)$ is a constant.

This is exactly the statement of continuity of f(z) at z_0 .

Example: 3.3 Give an example to show that continuity of a function at a point does not imply the existence of derivative at that point.

Solution:

Consider the function $w = |z|^2 = x^2 + y^2$

This function is continuous at every point in the plane, being a continuous function of two real variables. However, this is not differentiable at any point other than origin.

Example: 3.4 Show that the function f(z) is discontinuous at z = 0, given that $f(z) = \frac{2xy^2}{x^2 + 3y^4}$, when $z \neq 0$ and f(0) = 0.

Solution:

Given
$$f(z) = \frac{2xy^2}{x^2+3y^4}$$

Consider
$$\lim_{z \to z_0} [f(z)] = \lim_{\substack{y = mx \\ x \to 0}} [f(z)] = \lim_{x \to 0} \frac{2x(mx)^2}{x^2 + 3(mx)^4} = \lim_{x \to 0} \left[\frac{2m^2x}{1 + 3m^4x^2} \right] = 0$$

$$\lim_{\substack{y^2 = x \\ x \to 0}} [f(z)] = \lim_{x \to 0} \frac{2x^2}{x^2 + 3x^2} = \lim_{x \to 0} \frac{2x^2}{4x^2} = \frac{2}{4} = \frac{1}{2} \neq 0$$

f(z) is discontinuous

Example: 3.5 Show that the function f(z) is discontinuous at the origin (z = 0), given that

$$f(z) = \frac{xy(x-2y)}{x^3+y^3}, \text{ when } z \neq 0$$
$$= 0 \quad \text{, when } z = 0$$

Solution:

Consider
$$\lim_{z \to z_0} [f(z)] = \lim_{\substack{y = mx \\ x \to 0}} [f(z)] = \lim_{x \to 0} \frac{x(mx)(x - 2(mx))}{x^3 + (mx)^3}$$
$$= \lim_{x \to 0} \frac{m(1 - 2m)x^3}{(1 + m^3)x^3} = \frac{m(1 - 2m)}{1 + m^3}$$

Thus $\lim_{z\to 0} f(z)$ depends on the value of m and hence does not take a unique value.

- $\therefore \lim_{z \to 0} f(z) \text{does not exist.}$
- f(z) is discontinuous at the origin.

3.2 (i) The necessary condition for f = (z) to be analytic. [Cauchy – Riemann Equations]

The necessary conditions for a complex function f = (z) = u(x, y) + iv(x, y) to be

analytic in a region R are
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$ i.e., $u_x = v_y$ and $v_x = -u_y$

(ii) Sufficient conditions for f(z) to be analytic.

If the partial derivatives u_x , u_y , v_x and v_y are all continuous in D and u_x , v_y and $v_y = -v_{x'}$ then the function f(z) is analytic in a domain D.

(ii) Polar form of C-R equations

In Cartesian co-ordinates any point z is z = x + iy.

In polar co-ordinates, $z = re^{i\theta}$ where r is the modulus and θ is the argument.