
UNIT-II 

 

Brute-Force String Matching 
Recall the string-matching problem introduced in Section 1.3: given a string of n 

characters called the text and a string of m characters (m ≤ n) called the pattern, 

find a substring of the text that matches the pattern. To put it more precisely, we 

want to find i—the index of the leftmost character of the first matching substring 

in the text—such that ti 

= p0, . . . , ti+j 

= pj, . . . , ti+m−1 = pm−1: 

t0 . . . ti . . . ti+j . . . ti+m−1 . . . tn−1 text T 

_ _ _ 

p0 . . . pj . . . pm−1 pattern P 

If matches other than the first one need to be found, a string-matching algorithm 

can simply continue working until the entire text is exhausted. 

ALGORITHM BruteForceStringMatch(T [0..n − 1], P[0..m − 1]) 

//Implements brute-force string matching 

//Input: An array T [0..n − 1] of n characters representing a text and 

// an array P[0..m − 1] of m characters representing a pattern 

//Output: The index of the first character in the text that starts a 

// matching substring or −1 if the search is unsuccessful 

for i ←0 to n − m do 

j ←0 

while j <mand P[j ]= T [i + j ] do 

j ←j + 1 

if j = m return i 

return −1 

Thus, in the worst case, the algorithm makes m(n − m + 1) character comparisons, which 

puts it in theO(nm) class 

Write the algorithm to perform Binary Search and compute its time complexity. Or 

Explain binary search algorithm with an example 

BINARY SEARCH ALGORITHM 



 

Very efficient algorithm for searching in sorted array: 

K 

vs 

A[0] . . . A[m] . . . A[n-1] 

If K = A[m], stop [successful search]; 

otherwise, continue searching by the same 

method in A[0..m-1] if K < A[m] and in 

A[m+1..n-1] if K > A[m] 

//Input: An Array A[0…n-1] sorted in ascending orger and a search key K 

//Output: An index of the array‘s element that is equal to K or -1 if there is no such 

element. 

 

l = 0; r= n-1 

while l < r do 

m =l+r]/2 

if K = A[m] return m 

else if K < A[m] r =m-1 

else l = m+1 

return -1 

 
Time complexity: 

CWorst[n]=1,Cavg[n]=log2n,Cbest[n]=log2n+1 

For Example 

The following is our sorted array and let us assume that we need to search the location 

of value 31 using binary search. 

 

 

 

First, we shall determine half of the array by using this formula − 

mid = low + [high - low] / 2 

Here it is, 0 + [9 - 0 ] / 2 = 4 [integer value of 4.5]. So, 4 is the mid of the array. 
 



 

 

 

 
 

Now we compare the value stored at location 4, with the value being searched, i.e. 31. 

We find that the value at location 4 is 27, which is not a match. As the value is greater 

than 27 and we have a sorted array, 
 

to change our low to mid + 1 and find the new mid value again. low = mid + 1, mid = 

low + [high - low] / 2 Our new mid is 7 now. We compare the value stored at location 

7 with our target value 31. 

 

 
The value stored at location 7 is not a match, rather it is less than what we are looking 

for. So, the value must be in the lower part from this location. 
 

Hence, we calculate the mid again. This time it is 5. 
 

We compare the value stored at location 5 with our target value. We find that it is a 

match. 
 



We conclude that the target value 31 is stored at location 5. 
 

Binary search halves the searchable items and thus reduces the count of comparisons to 

be made to very less numbers. 

Write down the algorithm to construct a convex hull based on divide and conquer 

strategy. Or Explain the convex hull problem and the solution involved behind it 

CONVEX HULL OR QUICK HULL PROBLEM 

Convex hull: smallest convex set that includes given points. An O[n^3] brute force 

time. Assume points are sorted by x-coordinate values 

Identify extreme points P1 and P2 [leftmost and rightmost] 

Compute upper hull recursively: 

1. find point Pmax that is farthest away from line P1P2 

2. compute the upper hull of the points to the left of line P1Pmax 

3. compute the upper hull of the points to the left of line PmaxP2 

Compute lower hull in a similar manner 

Finding point farthest away from line P1P2 can be done in linear time 

Time efficiency: T[n] = T[x] + T[y] + T[z] + T[v] + O[n], where x + y + z +v 

<= n. 

worst case: Θ[n2] T[n] = T[n-1] + O[n] 

average case: Θ[n] 

If points are not initially sorted by x-coordinate value, this can be accomplished in 
O[n log n] time. 

Several O[n log n] algorithms for convex hull are known. 

 

CONVEX HULL THEOREM The convex hull of any set S of n>2 points not all 

on the same line is a convex polygon with the vertices at some of the points of S. 

[If all the points do lie on the same line, the polygon degenerates to a line segment 

but still with the endpoints at two points of S.] 

 

The convex-hull problem is the problem of constructing the convex hull for a 

given set S of n points. 

To solve it, we need to find the points that will serve as the vertices of the polygon 

in question. 

Mathematicians call the vertices of such a polygon ―extreme points.‖ 

 
CLOSEST PAIR PROBLEM 

1. Sort the points by x [list one] and then by y [list two]. 

2. Divide the points given into two subsets S1 and S2 by a vertical line x = c so that 



half the points lie 

to the left or on the line and half the points lie to the right or on the line. 

3. Find recursively the closest pairs for the left and right subsets. 

4. Set d = min{d1, d2}, We can limit our attention to the points in the symmetric 

vertical strip of width 2d 

as possible closest pair. Let C1and C2 be the subsets of points in the left subset S1 

and of the right subset S2, respectively, that lie in this vertical strip. The points in 

C1 and C2 are stored in increasing order of their y coordinates, taken from the 

second list. 

5. For every point P[x,y] in C1, we inspect points in C2 that may be closer to P than 

d. There can be no more than 6 such points [because d ≤ d2]! Running time of the 

algorithm [without sorting] is: T[n] = 2T[n/2] + M[n], where M[n] Θ[n] By the 

Master Theorem [with a = 2, b = 2, d = 1] T[n] Θ[n log n] So the total time is 

Θ[n log n]. 

 

 
CLOSEST-PAIR Problem 

Find the two closest points in a set of n points [in the two-dimensional 

Cartesian plane]. Brute-force algorithm 

Compute the distance between every pair of distinct points 

And return the indexes of the points for which the distance 

is the smallest. ALGORITHM BruteForceClosestPair[P ] 

//Finds distance between two closest points in the plane 

by brute force //Input: A list P of n [n ≥ 2] points p1[x1, 

y1], . . . , pn[xn, yn] //Output: The distance between the 

closest pair of points 

d←∞ 

for i ←1 to n − 

1 do for j ←i + 

1 to n do 

d ←min[d, sqrt[[xi− xj ]2 + [yi− yj ]2]] //sqrt 

is square root return d 

Develop a pseudo code for divide and conquer algorithm for merge two sorted arrays into 

a single sorted one – explain with example. or Write down the algorithm for merge 

sorting. Explain how the following elements get sorted 

[310,285,179,652,351,423,861,254,450,520] or Sort the following set of elements using 



merge sort:12,24,8,71,4,23,6,89,56. Or State and Explain Merge sort algorithm and give 

the recurrence relation and efficiency. 

MERGE SORT 

Merge sort is a perfect example of a successful application of the divide-and conquer 

technique. It sorts a given array A[0..n − 1] by dividing it into two halves A[0..n/2− 1] 

and A[n/2..n − 1], sorting each of them recursively, and then merging the two smaller 

sorted arrays into a single sorted one. 

Procedure: 

Merge sort sorts a given array A[0..n-1] by dividing it into two halves a[0..[n/2]-1] 

and A[n/2..n-1] sorting each of them recursively then merging the two smaller sorted 

arrays into a single sorted one. 

Divide Step: If given array A has zero or one element, return S; it is already 

sorted. Otherwise, divide A into two arrays, A1 and A2, each containing about 

half of the elements of A. 

Recursion Step: Recursively sort array A1 and A2. 

Conquer Step: Combine the elements back in A by merging the sorted arrays A1 

and A2 into a sorted sequence 

 
ALGORITHM Mergesort[A[0..n − 1]] 

//Sorts array A[0..n − 1] by recursive mergesort 

//Input: An array A[0..n − 1] of orderable 

elements //Output: Array A[0..n − 1] sorted in 

nondecreasing order if n > 1 

 

copy A[0..n/2− 1] to B[0..n/2− 1] 

copy A[n/2..n − 1] to C[0..n/2− 1] 

Mergesort[B[0..n/2− 1]] 

Mergesort[C[0..n/2− 1]] 

Merge[B, C, A] 

 
The non-recursive version of Mergesort starts from merging single elements 

into sorted pairs. ALGORITHM Merge[B[0..p − 1], C[0..q − 1], A[0..p + q − 

1]] //Merges two sorted arrays into one sorted array 

//Input: Arrays B[0..p − 1] and C[0..q − 1] both sorted 

//Output: Sorted array A[0..p + q − 1] of the elements of B and C 

i←0; j ←0; k←0 

while i <p and j 



<q do if B[i]≤ C[j 

] 

A[k]←B[i]; i ←i + 1 

else A[k]←C[j ]; j 

←j + 1 k←k + 1 

if i = p 

copy C[j..q −1] to A[k..p + q − 1] 

else copy B[i..p − 1] to A[k..p + q − 1] 

 
Analysis of Merge sort algorithm 

The recurrence relation for the number of key comparisons 

C[n] is C[n] = 2C[n/2] + Cmerge[n] for n > 1, C[1] = 0. 

In the worst case, Cmerge[n] = n − 1, and we have the 

recurrence C worst[n] = 2Cworst[n/2] + n − 1 for n > 1, 

Cworst[1] = 0. 
By Master Theorem, Cworst[n] ∈ Θ[n log n] the exact solution to the worst-case 
recurrence for n = 2 k Cworst[n] = n log2 n − n + 1. 

For large n, the number of comparisons made by this algorithm in the average case 

turns out to be 

about 0.25n less and hence is also in Θ [n log n]. 

For example 



 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

QUICK SORT 

Quicksort is the other important sorting algorithm that is based on the divide- 

and-conquer approach. quicksort divides input elements according to their 

value. A partition is an arrangement of the array‘s elements so that all the 

elements to the left of some element A[s] are less than or equal to A[s], and all 

the elements to the right of A[s] are greater than or equal to it: 

Sort the two subarrays to the left and to the right of A[s] independently. 

No work required to combine the solutions to the subproblems. 

Here is pseudocode of quicksort: call Quicksort[A[0..n − 1]] where As a 

partition algorithm use the HoarePartition 

 
ALGORITHM Quicksort[A[l..r]] 

//Sorts a subarray by quicksort 



STUDENTSFOCUS
.COM 

//Input: Subarray of array A[0..n − 1], defined by its 

left and right // indices l and r 

//Output: Subarray A[l..r] sorted in 

nondecreasing order if l < r 

s ←Partition[A[l..r]] //s is a split position 
 

Quicksort[A[l..s − 1]] 

Quicksort[A[s + 1..r]] 
 

 

 

 



 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

Time Efficiency analysis 

 
Best case: split in the middle — Θ[n log n] 

Worst case: sorted array! — Θ[n2] 

Average case: random arrays — Θ[n log n] 

 

 

 
Explain the method used for performing Multiplication of two large integers. Explain 

how divide and conquer method can be used to solve the same. 

Some applications like modern cryptography require manipulation of 

integers that are over 100 decimal digits long. Since such integers are too long to 

fit in a single word of a modern 



computer, they require special treatment.In the conventional pen-and-pencil algorithm for 

multiplying two n-digit integers, each ofthe n digits of the first number is multiplied by 

each of the n digits of the second number for thetotal of n2 digit multiplications. 

The divide-and-conquer method does the above multiplication in less than n2 

digit multiplications. For any pair of two-digit numbers a = a1a0 and b = b1b0, 

their product c can be 

 

computed by the formula c = a ∗ b = c2102 + 
c1101 + c0, where c2 = a1 ∗ b1 is the product of 
their first digits, 
c0 = a0 ∗ b0 is the product of their second digits, 
c1 = [a1 + a0] ∗   [b1 + b0] − [c2 + c0] is the product 
of the sum of the a‘s digits and the sum of the b‘s digits 
minus the sum of c2 and c0. 
c = a ∗ b = [a110n/2 + a0] ∗ [b110n/2 + b0] = [a1 ∗ b1]10n + [a1 ∗ b0 + a0 ∗ 

b1]10n/2 + [a0 ∗ b0] 

= c210n + c110n/2 

+ c0, where 
c2 = a1 ∗ b1 is the product of their first halves, 
c0 = a0 ∗ b0 is the product of their second halves, 

c1 = [a1 + a0] ∗ [b1 + b0] − [c2 + c0] is the product of 
the sum of the a‘s halves and the sum of the b‘s halves 
minus the sum of c2 and c0. 
Analysis of Time Complexity: By using Master Theorem, we obtain A[n] ∈ Θ[nlog23], 

Example: For instance: a = 2345, b = 6137, i.e., n=4. 

Then C = a * b = [23*102+45]*[61*102+37] 
C = a ∗ b = [a110n/2 + a0] * [b110n/2 + b0] 

= [a1 * b1]10n + [a1 * b0 + a0 * b1]10n/2 + [a0 * b0] 

= [23 * 61]104 + [23 * 37 + 45 * 61]102 + [45 * 37] 

= 1403•104 + 3596•102 + 1665 

= 14391265 

 

Find all the solution to the traveling salesman problem [cities and distance shown 

below] by exhaustive search. Give the optimal solutions. Or Explain exhaustive searching 

techniques with example. Or Find the optimal solution to the fractional knapsack problem 

with example. Or Solve the given knapsack problem 

un=3,m=20,[p1,p2,p3]=[25,24,15],[w1,w2,w3]=[18,15,10][M-15][N-14][M-14][N-15] 

[M-16] 

TRAVELING SALESMAN PROBLEM 



The traveling salesman problem [TSP] is one of the combinatorial problems. The 

problem asks to find the shortest tour through a given set of n cities that visits 

each city exactly once before 

returning to the city where it started.The problem can be conveniently modeled by a 

weighted graph, with the graph‘s vertices representing the cities and the edge weights 

specifying the distances. Then the problem can bestated as the problem of finding the 

shortest Hamiltonian circuit of the graph. 

[A Hamiltoniancircuit is defined as a cycle that passes through all the vertices of the 

graph exactly once]. A Hamiltonian circuit can also be defined as a sequence of n + 1 

adjacent vertices 

vi0, vi1, . . . , vin−1, vi0, where the first vertex of the sequence is the same as the 

last one and all the other n − 1 vertices are distinct. All circuits start and end at one 

particular vertex. 

 
Figure presents a small instance of the problem and its solution by this method. 

For example, 



FIGURE Solution to a small instance of the traveling salesman problem by 

exhaustive search. Time Complexity of TSP:O[n-1!] 

 
KNAPSACK PROBLEM 

Given n items of known weights w1, w2, . . . , wn and values v1, v2, . . . , vn 

and a knapsack of capacity W, find the most valuable subset of the items that 

fit into the knapsack. Real time examples: 

A Thief who wants to steal the most valuable loot that fits into his knapsack, 

A transport plane that has to deliver the most valuable set of items to a remote 

location without 

exceeding the plane‘s capacity. 

The exhaustive-search approach to this problem leads to generating all the subsets of the 

set 

of n items given, computing the total weight of each subset in order to identify 

feasible subsets [i.e., the ones with the total weight not exceeding the knapsack 

capacity], and finding a subset of the largest value among them. 

 
 

• weights: w1 w2 … wn 

• values: v1 v2 … vn 

• a knapsack of capacity W 



 



 

ASSIGNMENT PROBLEM 

There are n people who need to be assigned to n jobs, one person per job. The cost of 

assigning person i to job j is C[i,j]. Find an assignment that minimizes the total cost. For 

Example, 

 

 

 

 

 

 

 

 

 

 

 

We can describe feasible solutions to the assignment problem as n-tuples 
_j1, . . . , jn in which the ith component, i = 1, . . . , n, indicates the column of the 
element selected in the ith row (i.e., the job number assigned to the ith person). 
For example, for the cost matrix above, _2, 3, 4, 1_ indicates the assignment of 
Person 1 to Job 2, Person 2 to Job 3, Person 3 to Job 4, and Person 4 to Job 1. 
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