
UNIT –I 
 

Explain about algorithm with suitable example (Notion of algorithm). 
An algorithm is a sequence of unambiguous instructions for solving a 

computational problem, i.e., for obtaining a required output for any legitimate input 
in a finite amount of time. 

 

 
 

 

 
Algorithms – Computing the Greatest Common Divisor of Two 

Integers(gcd(m, n): the largest integer that divides both m and n.) 
Euclid’s algorithm: gcd(m, n) = gcd(n, m mod n) 

Step1: If n = 0, return the value of m as the answer and stop; otherwise, 

proceed to Step 2. 

Step2: Divide m by n and assign the value of the remainder to r. 

Step 3: Assign the value of n to m and the value of r to n. Go to Step 1. 
Algorithm Euclid(m, n) 

//Computes gcd(m, n) by Euclid‘s algorithm 

//Input: Two nonnegative, not-both-zero integers m and n 
//Output: Greatest common divisor of m and n 

while n ≠ 0 do 
r m mod n 
m n 
n r 

return m 

About This algorithm 
Finiteness: how do we know that Euclid‘s algorithm actually comes to a stop? 
Definiteness: nonambiguity 
Effectiveness: effectively computable. 

Consecutive Integer Algorithm 
Step1: Assign the value of min{m, n} to t. 

 

Step2: Divide m by t. If the remainder of this division is 0, go to 
Step3;otherwise, go to Step 4. 

Step3: Divide n by t. If the remainder of this division is 0, return the value of t 
as the answer and stop; otherwise, proceed to Step4. 

Step4: Decrease the value of t by 1. Go to Step2. 

About This algorithm 



Finiteness 
Definiteness 
Effectiveness 

Middle-school procedure 
Step1: Find the prime factors of m. 

Step2: Find the prime factors of n. 
Step3: Identify all the common factors in the two prime expansions found in 
Step1 and Step2. (If p is a common factor occurring Pm and Pn times in m and 
n, respectively, it should be repeated in min{Pm, Pn} times.) 

Step4: Compute the product of all the common factors and return it as the gcd 
of the numbers given. 

 

 

Explain the various Asymptotic Notations used in algorithm design? Or Discuss the 

properties of asymptotic notations. (Or) Explain the basic efficiency classes with 

notations. 

Asymptotic notation is a notation, which is used to take meaningful statement about 

the efficiency of a program. The efficiency analysis framework concentrates on the 

order of growth of an algorithm‘s basic operation count as the principal indicator of 

the algorithm‘s efficiency. 

To compare and rank such orders of growth, computer scientists use three notations, 

they are: 

O - Big oh notation, Ω - Big omega notation, Θ - Big theta notation 

Let t[n] and g[n] can be any nonnegative functions defined on the set of natural 

numbers. The algorithm‘s running time t[n] usually indicated by its basic operation 

count C[n], and g[n], some simple function to compare with the count. 

There are 5 basic asymptotic notations used in the algorithm design. 

Big Oh: A function t[n] is said to be in O[g[n]], denoted by t[n] ε O[g[n]], if t[n] 

is bounded above by some constant multiple of g[n] for all large n, i.e., if there 

exists some positive constant c and some non-negative integer n0 such that T [n] 

<=cg [n] for all n >= n0 

Big Omega: A function t[n] is said to be in Ω [g[n]], denoted by t[n] ε Ω [g[n]], 

if t[n] is bounded below by some constant multiple of g[n] for all large n, i.e., if 

there exists some positive constant c and some non-negative integer n0 such that 

T [n] >=cg [n] for all n >=n0 

Big Theta: A function t[n] is said to be in θ [g[n]], denoted by t[n] ε θ [g[n]], if 

t[n] is bounded 

both above & below by some constant multiple of g[n] for all large n, i.e., if 

there exists some positive constants c1 & c2 and some nonnegative integer n0 

such that c2g [n] <= t [n] <= c1g [n] for all n >= n0 
Little oh: The function f[n] = 0[g[n]] iff Lim f[n] = 0 n - 𝖺 g[n] 
Little Omega. :The function f[n] = ω [g[n]] iff Lim f[n] 
= 0 n - 𝖺 g[n] t[n] O[g[n]] iff t[n] <=cg[n] for n > 
n0 
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t[n] Ω[g[n]] iff t[n] >=cg[n] for n > n0 

 

 

 

 
t[n] Θ[g[n]] iff t[n] O[g[n]] and Ω[g[n]] 

Informal Definitions: Big O, Ω, Θ 

Some properties of asymptotic order of growth 
f[n] O[f[n]] 
f[n] O[g[n]] iff g[n] [f[n]] 

f [n]  O[g [n]] and  

g[n] 

Note similarity with a ≤ b 

 

 

 
 

O[h[n]] , the 

n 

 

 

 
 

f[   O[h[ 

n] n]] 

If 



If f1[n] O[g1[n]] and f2[n] O[g2[n]] , then f1[n] + f2[n] O[max{g1[n], 
g2[n]}] 

Basic Efficiency classes: 

1 constant Best case 

 

log n 

logarith 

mic 

Divide ignore 

part 

n linear Examine each 

 

n log n 
 
n-log-n 

 
or 

 
linear 

Divide use all 

parts 

logarith 

mic 

  

n2 quadratic Nested loops 

n3 cubic Nested loops 

 

2n 
exponent 

ial 

 

All subsets 

n! factorial All permutations 

 

 
Explain recursive and non-recursive algorithms with example. (Or) 

With an example, explain how recurrence equations are solved. 

Mathematical Analysis of Recursive Algorithms 

General Plan for Analysis 
Decide on a parameter indicating an input‘s size. 
Identify the algorithm‘s basic operation. 
Check whether the number of times the basic op. is executed may vary on different 
inputs of the same size. [If it may, the worst, average, and best cases must be 
investigated separately.] 
Set up a recurrence relation with an appropriate initial condition expressing the 
number of times the basic op. is executed. 
Solve the recurrence by backward substitutions or another method. 

 
EXAMPLE Compute the factorial function F[n] = n! for an arbitrary 

nonnegative integer n ALGORITHM F[n] 



//Computes n! recursively 

//Input: A nonnegative integer n 

//Output: The value of n! 

if n = 0 return 1 

else return F[n − 1] * n 
Thus, we succeeded in setting up the recurrence relation and initial condition 

for the algorithm’s number of multiplications M(n): 

M(n) = M(n − 1) + 1 for n > 0, 

M(0) = 0. 
From the several techniques available for 
solving recurrence relations, we use what can be called the method of backward 

substitutions. The method’s idea (and the reason for the name) is immediately clear from 

the way it applies to solving our particular recurrence: 

M(n) = M(n − 1) + 1 substitute M(n − 1) = M(n − 2) + 1 

= [M(n − 2) + 1]+ 1= M(n − 2) + 2 substitute M(n − 2) = M(n − 3) + 1 

= [M(n − 3) + 1]+ 2 = M(n − 3) + 3. 

Since it is specified for n = 0, we have to substitute i = n in the pattern’s formula to get 

the ultimate result of our backward substitutions: 

M(n) = M(n − 1) + 1= . . . = M(n − i) + i = . . . = M(n − n) + n = n. 

EXAMPLE 2: consider educational workhorse of recursive algorithms: the Tower of 

Hanoi puzzle. We have n disks of different sizes that can slide onto any of three pegs. 

Consider A (source), B (auxiliary), and C (Destination). Initially, all the disks are on the 

first peg in order of size, the largest on the bottom and the smallest on top. The goal is to 

move all the disks to the third peg, using the second one as an auxiliary. 

ALGORITHM TOH(n, A, C, B) 

//Move disks from source to destination recursively 

//Input: n disks and 3 pegs A, B, and C 

//Output: Disks moved to destination as in the source order. 

if n=1 

Move disk from A to C 

else 

Move top n-1 disks from A to B using C 

TOH(n - 1, A, B, C) 

Move top n-1 disks from B to C using A 

TOH(n - 1, B, C, A) 



Let us apply the general plan outlined above to the Tower of Hanoi problem. 

The number of disks n is the obvious choice for the input’s size indicator, and so is 

moving one disk as the algorithm’s basic operation. Clearly, the number of moves 

M(n) depends on n only, and we get the following recurrence equation for it: 

M(n) = M(n − 1) + 1+ M(n − 1) for n > 1. 

With the obvious initial condition M(1) = 1, we have the following recurrence 

relation for the number of moves M(n): 

M(n) = 2M(n − 1) + 1 for n > 1, (2.3) 

M(1) = 1. 

We solve this recurrence by the same method of backward substitutions: 

M(n) = 2M(n − 1) + 1 sub. M(n − 1) = 2M(n − 2) + 1 

= 2[2M(n − 2) + 1]+ 1= 22M(n − 2) + 2 + 1 sub. M(n − 2) = 2M(n − 3) + 1 

= 22[2M(n − 3) + 1]+ 2 + 1= 23M(n − 3) + 22 + 2 + 1. 

The pattern of the first three sums on the left suggests that the next one will be 

24M(n − 4) + 23 + 22 + 2 + 1, and generally, after i substitutions, we get 

M(n) = 2iM(n − i) + 2i−1 + 2i−2 + . . . + 2 + 1= 2iM(n − i) + 2i − 1. 

Since the initial condition is specified for n = 1, which is achieved for i = n − 1, we 
get the following formula for the solution to recurrence (2.3): 

M(n) = 2n−1M(n − (n − 1)) + 2n−1 − 1 

= 2n−1M(1) + 2n−1 − 1= 2n−1 + 2n−1 − 1= 2n − 1. 
Mathematical Analysis of Non-Recursive Algorithms 

General Plan for Analysis 

Decide on parameter n indicating input size 
Identify algorithm‘s basic operation 
Determine worst, average, and best cases for input of size n 
Set up a sum for the number of times the basic operation is executed 
Simplify the sum using standard formulas and rules [see Appendix A] 

 
EXAMPLE Consider the problem of finding the value of the largest element in 

a list of n numbers ALGORITHM MaxElement[A[0..n−1]] 

//Determines the value of the largest element in a 

given array //Input: An array A[0..n−1] of real 

numbers 

//Output: The value of the largest element in A 

maxval ←A[0] 

fori ←1 to n−1do 

if A[i]> maxval 

maxval←A[i] 



return maxval 

Let us denote C(n) the number of times this comparison is executed and try 

to find a formula expressing it as a function of size n. The algorithm makes one 

comparison on each execution of the loop, which is repeated for each value of the 

loop’s variable i within the bounds 1 and n − 1, inclusive. Therefore, we get the 
following sum for C(n): 

This is an easy sum to compute because it is nothing other than 1 repeated n − 1 

times. Thus, t(n)=O(n) 

EXAMPLE 2 Given two n×n matrices A and B, find the time efficiency of the 

definition-based algorithm for computing their produc tC =AB. By definition,C is an n×n 

matrix whose elements are computed as the scalar [dot] products of the rows of matrix A 

and the columns of matrixB: whereC[i, j]=A[i, 0]B[0, j]+...+A[i, k]B[k, j]+...+A[i, 

n−1]B[n−1, j] for every pair of indices 0 ≤i, j ≤n−1. 

 

ALGORITHM MatrixMultiplication[A[0..n−1, 0..n−1], B[0..n−1, 0..n−1]] 

//Multiplies two square matrices of order n by the definition-based algorithm 

//Input: Two n×n matrices A andB 

//Output: MatrixC =AB 

fori ←0 to n−1do 

for j ←0 to n−1do 

C[i, j]←0.0 

for k←0 to n−1do 
C[i, j]←C[i, j]+A[i, k]∗B[k, j] 

return C 

To measure an input‘s size by matrix order n. There are two arithmetical operations in 

the innermost loop here—multiplication and addition—that, in principle, can compete for 

designation as the algorithm‘s basic operation. 



 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

What are the fundamental steps to solve an algorithm? Explain. Or Describe in detail 

about the steps in analyzing and coding an algorithm. 

An algorithm is a sequence of unambiguous instructions for solving problem, i.e., 

for obtaining a required output for any legitimate input in a finite amount of time. 

Algorithmic steps are 

Understand the problem 

Decision making 

Design an algorithm 

Proving correctness of an algorithm 

Analyze the algorithm 

Coding and implementation of an algorithm 

Figure : Algorithm design and analysis process 
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3. Understand the problem 

a. Read the description carefully to understand the problem completely 

b. Identfiy the problem types and use existing algorithm to find solution 

c. Input (instance) to the problem and range of the input gets fixed. 

4. Decision making 

a. Ascertaining the capabilities of computational device 
i. In Ram instructions are executed one after another, accordingly 

algorithms designed to be executed on such machines are executed 

sequential algorithms 

ii. In some computers operations are executed concurrently in parallel. 
iii. Choice of computational devices like processor and memory is mainly 

based on space and time efficiency. 

b. Choosing between exact versus approximate problem solving 



i. An algorithm used to solve the problem exactly and produce correct 

result is called exact algorithm 

ii. If the problem is to so complex and not able to get exact solution then 
it is called approximation algorithm. 

c. Algorithm design strategies 

i. Algorithms + data structures = programs, though algorithms and data 

structures are independent then they combined to produce programs. 

ii. Implementation of an algorithm is possible with the help of algorithms and 

data structures. 

iii. Algorithm design strategy techniques are brute force, dynamic 

programming, greedy technique, divide and conquer and so on. 

iv. Methods for specifying an algorithm 

1. Natural language: It is very simple and easy to specify an algorithm using 

natural language. Example // addition of 2 nos 

Read a 

Read b 

Add 
c=a+b 

Store and display the result in c 

2. Flow chart – Flowchart is a diagrammatic and graphical representation of an 

algorithm. It is a method of expressing an algorithm by a collection of connected 

graphical shapes containing description of the algorithm‘s steps. 

3. Pseudo code - It is a mixture of natural language and programming language 

constructs. It is usually more precise than natural language. 

Example // sum of 2 nos 

// input a and b 

// output c 

c← a+ b 

d. Proving an algorithm’s correctness 

i. Once an algorithm has been specified then its correctness must be proved. 

ii. An algorithm must yields a required result for every legitimate input in a finite 

amount of time. 

iii. For example, the correctness of Euclid‘s algorithm for computing the 

greatest common divisor stems from the correctness of the equality 

gcd(m, n) = gcd(n, m mod n). 

iv. A common technique for proving correctness is to use mathematical induction 

because an algorithm‘s iterations provide a natural sequence of steps needed for 

such proofs. 

v. The notion of correctness for approximation algorithms is less straightforward 

than it is for exact algorithms. The error produced by the algorithm should not 

exceed a predefined limit. 



e. Analyzing an algorithm 

For an algorithm the most important is algorithm efficiency .There are two types 

of algorithm efficiencies are 

Time efficiency: indicates how fast the algorithm runs 

Space efficiency: indicates how much extra memory the algorithm needs 

So the efficiency of an algorithm through analysis is based on both time and space 

efficiency. There are some factors to analyze an algorithm are: 

Simplicity of an algorithm 

Generality of an algorithm 

Time efficiency of an algorithm 

Space efficiency of an 

algorithm f. Coding an 

algorithm 

i. The coding / implementation of an algorithm is done by a suitable programming 

language like C, C++, JAVA. 

ii. The transition from an algorithm to a program can be done either incorrectly or 

very inefficiently. Implementing an algorithm correctly is necessary. The 

Algorithm power should not reduce by inefficient implementation. 

iii. Standard tricks like computing a loop‘s invariant outside the loop, collecting 

common sub expressions, replacing expensive operations by cheap ones, 

selection of programming language and so on should be known to the 

programmer. 

 

Discuss Fundamentals of the analysis of algorithm efficiency elaborately. 

Analysis of algorithm is the process of investigation of an 

algorithm‘s efficiency with respect to two resources: running 

time and memory space. 
 

The simplicity and generality measures of an algorithm estimate the efficiency 

The speed and memory are the efficiency considerations of 

modern computers. That there are two kinds of efficiency: time 

efficiency and space efficiency. 

Time efficiency, also called time complexity, indicates how 

fast an algorithm in question runs. 

Space efficiency, also called space complexity, refers to the amount of memory 

units required by the algorithm in addition to the space needed for its input and 

output. 



1. Measuring an input‘s size 

a. The efficiency measure of an algorithm is directly proportional to the input 

size or range. 

b. The input given may be a square or a non-square matrix. 

c. Some algorithms require more than one parameter to indicate the size of 

their inputs. 

2. Units for measuring time 

a. We can simply use some standard unit of time measurement-a second, 

a millisecond, and so on-to measure the running time of a program 

implementing the algorithm. 

b. There are obvious drawbacks to such an approach. They are 

Dependence on the speed of a particular computer 

Dependence on the quality of a program implementing the algorithm 

The compiler used in generating the machine code 

The difficulty of clocking the actual running time of the program. 

c. Since we are in need to measure algorithm efficiency, we should 

have a metric that does not depend on these extraneous factors. 

d. One possible approach is to count the number of times each of 

the algorithm's operations is executed. This approach is both difficult and 

unnecessary. 

e. The main objective is to identify the most important operation of the 

algorithm, called the basic operation, the operation contributing the most to the 

total running time, and compute the number of times the basic operation is 

executed. 

3. Efficiency classes 

a. It is reasonable to measure an algorithm's efficiency as a function of a 

parameter 
 

indicating the size of the algorithm's input. 

b. But there are many algorithms for which running time depends not 

only on an input size but also on the specifics of a particular input. 

4. Example, sequential search. This is a straightforward algorithm that searches for a 

given item (some search key K) in a list of n elements by checking 

successive elements of the list until either a match with the search key is 

found or the list is exhausted. 



//Searches for a given value in a given array by 

sequential search //Input: An array A[0..n -1] and a 

search key K 

//Output: Returns the index of the first element of A that matches K 

// or -1 ifthere are no matching 

elements i←0 

while i < n and A[i] ≠ 

K do i←i+1 

if i < n return i 

else return -1 

Worst case 

efficiency 

The worst-case efficiency of an algorithm is its efficiency for the 

worst-case input of size n, which is an input (or inputs) of size n for which 

the algorithm runs the longest among all possible inputs of that size. 

In the worst case, when there are no matching elements or the first 

matching element happens to be the last one on the list, the algorithm makes 

the largest number of key comparisons among all possible inputs of size n: 

Cworst (n) = n. 

Best case Efficiency 

The best-case efficiency of an algorithm is its efficiency for the best- 

case input of size n, which is an input (or inputs) of size n for which the 

algorithm runs the fastest among 

all possible inputs of that size. 

First, determine the kind of inputs for which the count C (n) will be the 

smallest among all possible inputs of size n. (Note that the best case does not 

mean the smallest input; it means the input of size n for which the algorithm 

runs the fastest.) 

Then ascertain the value of C (n) on these most convenient inputs. Example- 

for sequential search, best-case inputs will be lists of size n with their first 

elements equal to a search key; accordingly, Cbest(n) = 1. 

 

The average number of key comparisions Cavg(n) can be computed 

as follows, o let us consider again sequential search. The 

standard assumptions are, 

In the case of a successful search, the probability of the first match 

occurring in the ith position of the list is pin for every i, and the number 



of comparisons made by the algorithm in such a situation is obviously i. 

Cavg(n) =(n+ 1)/2 

5. Orders of growth 

Big oh , Big omega and Big Theta notations described above 2 Question. 
Discuss important problem types that you face during Algorithm Analysis. 

sorting 
Rearrange the items of a given list in ascending order. 
Input: A sequence of n numbers <a1, a2, …, an> 

Output: A reordering <a´1, a´2, …, a´n> of the input sequence such 

that a´1≤a´2 ≤… ≤a´n. 

A specially chosen piece of information used to guide sorting. I.e., 
sort student records by names. 
Examples of sorting algorithms 
Selection sort 
Bubble sort 
Insertion sort 
Merge sort 
Heap sort … 

 

Evaluate sorting algorithm complexity: the number of key 

comparisons. 
Two properties 
Stability: A sorting algorithm is called stable if it preserves the 
relative order of any two equal elements in its input. 
In place: A sorting algorithm is in place if it does not require extra 
memory, except, possibly for a few memory units. 

searching 
Find a given value, called a search key, in a given set. 
Examples of searching algorithms 

Sequential searching 
Binary searching… 

string processing 
A string is a sequence of characters from an alphabet. 
Text strings: letters, numbers, and special characters. 
String matching: searching for a given word/pattern in a text. 

graph problems 
Informal definition 

A graph is a collection of points called vertices, some of 
which are connected by line segments called edges. 

Modeling real-life problems 
Modeling WWW 
communication networks 
Project scheduling … 

Examples of graph algorithms 
Graph traversal algorithms 
Shortest-path algorithms 
Topological sorting 

combinatorial problems 
geometric problems, 
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