
UNIT –I

Explain about algorithm with suitable example (Notion of algorithm).
An algorithm is a sequence of unambiguous instructions for solving a

computational problem, i.e., for obtaining a required output for any legitimate input
in a finite amount of time.

Algorithms – Computing the Greatest Common Divisor of Two

Integers(gcd(m, n): the largest integer that divides both m and n.)
Euclid’s algorithm: gcd(m, n) = gcd(n, m mod n)

Step1: If n = 0, return the value of m as the answer and stop; otherwise,

proceed to Step 2.

Step2: Divide m by n and assign the value of the remainder to r.

Step 3: Assign the value of n to m and the value of r to n. Go to Step 1.
Algorithm Euclid(m, n)

//Computes gcd(m, n) by Euclid‘s algorithm

//Input: Two nonnegative, not-both-zero integers m and n
//Output: Greatest common divisor of m and n

while n ≠ 0 do
r m mod n
m n
n r

return m

About This algorithm
Finiteness: how do we know that Euclid‘s algorithm actually comes to a stop?
Definiteness: nonambiguity
Effectiveness: effectively computable.

Consecutive Integer Algorithm
Step1: Assign the value of min{m, n} to t.

Step2: Divide m by t. If the remainder of this division is 0, go to
Step3;otherwise, go to Step 4.

Step3: Divide n by t. If the remainder of this division is 0, return the value of t
as the answer and stop; otherwise, proceed to Step4.

Step4: Decrease the value of t by 1. Go to Step2.

About This algorithm

Finiteness
Definiteness
Effectiveness

Middle-school procedure
Step1: Find the prime factors of m.

Step2: Find the prime factors of n.
Step3: Identify all the common factors in the two prime expansions found in
Step1 and Step2. (If p is a common factor occurring Pm and Pn times in m and
n, respectively, it should be repeated in min{Pm, Pn} times.)

Step4: Compute the product of all the common factors and return it as the gcd
of the numbers given.

Explain the various Asymptotic Notations used in algorithm design? Or Discuss the

properties of asymptotic notations. (Or) Explain the basic efficiency classes with

notations.

Asymptotic notation is a notation, which is used to take meaningful statement about

the efficiency of a program. The efficiency analysis framework concentrates on the

order of growth of an algorithm‘s basic operation count as the principal indicator of

the algorithm‘s efficiency.

To compare and rank such orders of growth, computer scientists use three notations,

they are:

O - Big oh notation, Ω - Big omega notation, Θ - Big theta notation

Let t[n] and g[n] can be any nonnegative functions defined on the set of natural

numbers. The algorithm‘s running time t[n] usually indicated by its basic operation

count C[n], and g[n], some simple function to compare with the count.

There are 5 basic asymptotic notations used in the algorithm design.

Big Oh: A function t[n] is said to be in O[g[n]], denoted by t[n] ε O[g[n]], if t[n]

is bounded above by some constant multiple of g[n] for all large n, i.e., if there

exists some positive constant c and some non-negative integer n0 such that T [n]

<=cg [n] for all n >= n0

Big Omega: A function t[n] is said to be in Ω [g[n]], denoted by t[n] ε Ω [g[n]],

if t[n] is bounded below by some constant multiple of g[n] for all large n, i.e., if

there exists some positive constant c and some non-negative integer n0 such that

T [n] >=cg [n] for all n >=n0

Big Theta: A function t[n] is said to be in θ [g[n]], denoted by t[n] ε θ [g[n]], if

t[n] is bounded

both above & below by some constant multiple of g[n] for all large n, i.e., if

there exists some positive constants c1 & c2 and some nonnegative integer n0

such that c2g [n] <= t [n] <= c1g [n] for all n >= n0
Little oh: The function f[n] = 0[g[n]] iff Lim f[n] = 0 n - 𝖺 g[n]
Little Omega. :The function f[n] = ω [g[n]] iff Lim f[n]
= 0 n - 𝖺 g[n] t[n] O[g[n]] iff t[n] <=cg[n] for n >
n0

STUDENTSFOCUS
.COM

t[n] Ω[g[n]] iff t[n] >=cg[n] for n > n0

t[n] Θ[g[n]] iff t[n] O[g[n]] and Ω[g[n]]

Informal Definitions: Big O, Ω, Θ

Some properties of asymptotic order of growth
f[n] O[f[n]]
f[n] O[g[n]] iff g[n] [f[n]]

f [n] O[g [n]] and

g[n]

Note similarity with a ≤ b

O[h[n]] , the

n

f[O[h[

n] n]]

If

If f1[n] O[g1[n]] and f2[n] O[g2[n]] , then f1[n] + f2[n] O[max{g1[n],
g2[n]}]

Basic Efficiency classes:

1 constant Best case

log n

logarith

mic

Divide ignore

part

n linear Examine each

n log n

n-log-n

or

linear

Divide use all

parts

logarith

mic

n2 quadratic Nested loops

n3 cubic Nested loops

2n
exponent

ial

All subsets

n! factorial All permutations

Explain recursive and non-recursive algorithms with example. (Or)

With an example, explain how recurrence equations are solved.

Mathematical Analysis of Recursive Algorithms

General Plan for Analysis
Decide on a parameter indicating an input‘s size.
Identify the algorithm‘s basic operation.
Check whether the number of times the basic op. is executed may vary on different
inputs of the same size. [If it may, the worst, average, and best cases must be
investigated separately.]
Set up a recurrence relation with an appropriate initial condition expressing the
number of times the basic op. is executed.
Solve the recurrence by backward substitutions or another method.

EXAMPLE Compute the factorial function F[n] = n! for an arbitrary

nonnegative integer n ALGORITHM F[n]

//Computes n! recursively

//Input: A nonnegative integer n

//Output: The value of n!

if n = 0 return 1

else return F[n − 1] * n
Thus, we succeeded in setting up the recurrence relation and initial condition

for the algorithm’s number of multiplications M(n):

M(n) = M(n − 1) + 1 for n > 0,

M(0) = 0.
From the several techniques available for
solving recurrence relations, we use what can be called the method of backward

substitutions. The method’s idea (and the reason for the name) is immediately clear from

the way it applies to solving our particular recurrence:

M(n) = M(n − 1) + 1 substitute M(n − 1) = M(n − 2) + 1

= [M(n − 2) + 1]+ 1= M(n − 2) + 2 substitute M(n − 2) = M(n − 3) + 1

= [M(n − 3) + 1]+ 2 = M(n − 3) + 3.

Since it is specified for n = 0, we have to substitute i = n in the pattern’s formula to get

the ultimate result of our backward substitutions:

M(n) = M(n − 1) + 1= . . . = M(n − i) + i = . . . = M(n − n) + n = n.

EXAMPLE 2: consider educational workhorse of recursive algorithms: the Tower of

Hanoi puzzle. We have n disks of different sizes that can slide onto any of three pegs.

Consider A (source), B (auxiliary), and C (Destination). Initially, all the disks are on the

first peg in order of size, the largest on the bottom and the smallest on top. The goal is to

move all the disks to the third peg, using the second one as an auxiliary.

ALGORITHM TOH(n, A, C, B)

//Move disks from source to destination recursively

//Input: n disks and 3 pegs A, B, and C

//Output: Disks moved to destination as in the source order.

if n=1

Move disk from A to C

else

Move top n-1 disks from A to B using C

TOH(n - 1, A, B, C)

Move top n-1 disks from B to C using A

TOH(n - 1, B, C, A)

Let us apply the general plan outlined above to the Tower of Hanoi problem.

The number of disks n is the obvious choice for the input’s size indicator, and so is

moving one disk as the algorithm’s basic operation. Clearly, the number of moves

M(n) depends on n only, and we get the following recurrence equation for it:

M(n) = M(n − 1) + 1+ M(n − 1) for n > 1.

With the obvious initial condition M(1) = 1, we have the following recurrence

relation for the number of moves M(n):

M(n) = 2M(n − 1) + 1 for n > 1, (2.3)

M(1) = 1.

We solve this recurrence by the same method of backward substitutions:

M(n) = 2M(n − 1) + 1 sub. M(n − 1) = 2M(n − 2) + 1

= 2[2M(n − 2) + 1]+ 1= 22M(n − 2) + 2 + 1 sub. M(n − 2) = 2M(n − 3) + 1

= 22[2M(n − 3) + 1]+ 2 + 1= 23M(n − 3) + 22 + 2 + 1.

The pattern of the first three sums on the left suggests that the next one will be

24M(n − 4) + 23 + 22 + 2 + 1, and generally, after i substitutions, we get

M(n) = 2iM(n − i) + 2i−1 + 2i−2 + . . . + 2 + 1= 2iM(n − i) + 2i − 1.

Since the initial condition is specified for n = 1, which is achieved for i = n − 1, we
get the following formula for the solution to recurrence (2.3):

M(n) = 2n−1M(n − (n − 1)) + 2n−1 − 1

= 2n−1M(1) + 2n−1 − 1= 2n−1 + 2n−1 − 1= 2n − 1.
Mathematical Analysis of Non-Recursive Algorithms

General Plan for Analysis

Decide on parameter n indicating input size
Identify algorithm‘s basic operation
Determine worst, average, and best cases for input of size n
Set up a sum for the number of times the basic operation is executed
Simplify the sum using standard formulas and rules [see Appendix A]

EXAMPLE Consider the problem of finding the value of the largest element in

a list of n numbers ALGORITHM MaxElement[A[0..n−1]]

//Determines the value of the largest element in a

given array //Input: An array A[0..n−1] of real

numbers

//Output: The value of the largest element in A

maxval ←A[0]

fori ←1 to n−1do

if A[i]> maxval

maxval←A[i]

return maxval

Let us denote C(n) the number of times this comparison is executed and try

to find a formula expressing it as a function of size n. The algorithm makes one

comparison on each execution of the loop, which is repeated for each value of the

loop’s variable i within the bounds 1 and n − 1, inclusive. Therefore, we get the
following sum for C(n):

This is an easy sum to compute because it is nothing other than 1 repeated n − 1

times. Thus, t(n)=O(n)

EXAMPLE 2 Given two n×n matrices A and B, find the time efficiency of the

definition-based algorithm for computing their produc tC =AB. By definition,C is an n×n

matrix whose elements are computed as the scalar [dot] products of the rows of matrix A

and the columns of matrixB: whereC[i, j]=A[i, 0]B[0, j]+...+A[i, k]B[k, j]+...+A[i,

n−1]B[n−1, j] for every pair of indices 0 ≤i, j ≤n−1.

ALGORITHM MatrixMultiplication[A[0..n−1, 0..n−1], B[0..n−1, 0..n−1]]

//Multiplies two square matrices of order n by the definition-based algorithm

//Input: Two n×n matrices A andB

//Output: MatrixC =AB

fori ←0 to n−1do

for j ←0 to n−1do

C[i, j]←0.0

for k←0 to n−1do
C[i, j]←C[i, j]+A[i, k]∗B[k, j]

return C

To measure an input‘s size by matrix order n. There are two arithmetical operations in

the innermost loop here—multiplication and addition—that, in principle, can compete for

designation as the algorithm‘s basic operation.

What are the fundamental steps to solve an algorithm? Explain. Or Describe in detail

about the steps in analyzing and coding an algorithm.

An algorithm is a sequence of unambiguous instructions for solving problem, i.e.,

for obtaining a required output for any legitimate input in a finite amount of time.

Algorithmic steps are

Understand the problem

Decision making

Design an algorithm

Proving correctness of an algorithm

Analyze the algorithm

Coding and implementation of an algorithm

Figure : Algorithm design and analysis process

STUDENTSFOCUS
.COM

3. Understand the problem

a. Read the description carefully to understand the problem completely

b. Identfiy the problem types and use existing algorithm to find solution

c. Input (instance) to the problem and range of the input gets fixed.

4. Decision making

a. Ascertaining the capabilities of computational device
i. In Ram instructions are executed one after another, accordingly

algorithms designed to be executed on such machines are executed

sequential algorithms

ii. In some computers operations are executed concurrently in parallel.
iii. Choice of computational devices like processor and memory is mainly

based on space and time efficiency.

b. Choosing between exact versus approximate problem solving

i. An algorithm used to solve the problem exactly and produce correct

result is called exact algorithm

ii. If the problem is to so complex and not able to get exact solution then
it is called approximation algorithm.

c. Algorithm design strategies

i. Algorithms + data structures = programs, though algorithms and data

structures are independent then they combined to produce programs.

ii. Implementation of an algorithm is possible with the help of algorithms and

data structures.

iii. Algorithm design strategy techniques are brute force, dynamic

programming, greedy technique, divide and conquer and so on.

iv. Methods for specifying an algorithm

1. Natural language: It is very simple and easy to specify an algorithm using

natural language. Example // addition of 2 nos

Read a

Read b

Add
c=a+b

Store and display the result in c

2. Flow chart – Flowchart is a diagrammatic and graphical representation of an

algorithm. It is a method of expressing an algorithm by a collection of connected

graphical shapes containing description of the algorithm‘s steps.

3. Pseudo code - It is a mixture of natural language and programming language

constructs. It is usually more precise than natural language.

Example // sum of 2 nos

// input a and b

// output c

c← a+ b

d. Proving an algorithm’s correctness

i. Once an algorithm has been specified then its correctness must be proved.

ii. An algorithm must yields a required result for every legitimate input in a finite

amount of time.

iii. For example, the correctness of Euclid‘s algorithm for computing the

greatest common divisor stems from the correctness of the equality

gcd(m, n) = gcd(n, m mod n).

iv. A common technique for proving correctness is to use mathematical induction

because an algorithm‘s iterations provide a natural sequence of steps needed for

such proofs.

v. The notion of correctness for approximation algorithms is less straightforward

than it is for exact algorithms. The error produced by the algorithm should not

exceed a predefined limit.

e. Analyzing an algorithm

For an algorithm the most important is algorithm efficiency .There are two types

of algorithm efficiencies are

Time efficiency: indicates how fast the algorithm runs

Space efficiency: indicates how much extra memory the algorithm needs

So the efficiency of an algorithm through analysis is based on both time and space

efficiency. There are some factors to analyze an algorithm are:

Simplicity of an algorithm

Generality of an algorithm

Time efficiency of an algorithm

Space efficiency of an

algorithm f. Coding an

algorithm

i. The coding / implementation of an algorithm is done by a suitable programming

language like C, C++, JAVA.

ii. The transition from an algorithm to a program can be done either incorrectly or

very inefficiently. Implementing an algorithm correctly is necessary. The

Algorithm power should not reduce by inefficient implementation.

iii. Standard tricks like computing a loop‘s invariant outside the loop, collecting

common sub expressions, replacing expensive operations by cheap ones,

selection of programming language and so on should be known to the

programmer.

Discuss Fundamentals of the analysis of algorithm efficiency elaborately.

Analysis of algorithm is the process of investigation of an

algorithm‘s efficiency with respect to two resources: running

time and memory space.

The simplicity and generality measures of an algorithm estimate the efficiency

The speed and memory are the efficiency considerations of

modern computers. That there are two kinds of efficiency: time

efficiency and space efficiency.

Time efficiency, also called time complexity, indicates how

fast an algorithm in question runs.

Space efficiency, also called space complexity, refers to the amount of memory

units required by the algorithm in addition to the space needed for its input and

output.

1. Measuring an input‘s size

a. The efficiency measure of an algorithm is directly proportional to the input

size or range.

b. The input given may be a square or a non-square matrix.

c. Some algorithms require more than one parameter to indicate the size of

their inputs.

2. Units for measuring time

a. We can simply use some standard unit of time measurement-a second,

a millisecond, and so on-to measure the running time of a program

implementing the algorithm.

b. There are obvious drawbacks to such an approach. They are

Dependence on the speed of a particular computer

Dependence on the quality of a program implementing the algorithm

The compiler used in generating the machine code

The difficulty of clocking the actual running time of the program.

c. Since we are in need to measure algorithm efficiency, we should

have a metric that does not depend on these extraneous factors.

d. One possible approach is to count the number of times each of

the algorithm's operations is executed. This approach is both difficult and

unnecessary.

e. The main objective is to identify the most important operation of the

algorithm, called the basic operation, the operation contributing the most to the

total running time, and compute the number of times the basic operation is

executed.

3. Efficiency classes

a. It is reasonable to measure an algorithm's efficiency as a function of a

parameter

indicating the size of the algorithm's input.

b. But there are many algorithms for which running time depends not

only on an input size but also on the specifics of a particular input.

4. Example, sequential search. This is a straightforward algorithm that searches for a

given item (some search key K) in a list of n elements by checking

successive elements of the list until either a match with the search key is

found or the list is exhausted.

//Searches for a given value in a given array by

sequential search //Input: An array A[0..n -1] and a

search key K

//Output: Returns the index of the first element of A that matches K

// or -1 ifthere are no matching

elements i←0

while i < n and A[i] ≠

K do i←i+1

if i < n return i

else return -1

Worst case

efficiency

The worst-case efficiency of an algorithm is its efficiency for the

worst-case input of size n, which is an input (or inputs) of size n for which

the algorithm runs the longest among all possible inputs of that size.

In the worst case, when there are no matching elements or the first

matching element happens to be the last one on the list, the algorithm makes

the largest number of key comparisons among all possible inputs of size n:

Cworst (n) = n.

Best case Efficiency

The best-case efficiency of an algorithm is its efficiency for the best-

case input of size n, which is an input (or inputs) of size n for which the

algorithm runs the fastest among

all possible inputs of that size.

First, determine the kind of inputs for which the count C (n) will be the

smallest among all possible inputs of size n. (Note that the best case does not

mean the smallest input; it means the input of size n for which the algorithm

runs the fastest.)

Then ascertain the value of C (n) on these most convenient inputs. Example-

for sequential search, best-case inputs will be lists of size n with their first

elements equal to a search key; accordingly, Cbest(n) = 1.

The average number of key comparisions Cavg(n) can be computed

as follows, o let us consider again sequential search. The

standard assumptions are,

In the case of a successful search, the probability of the first match

occurring in the ith position of the list is pin for every i, and the number

of comparisons made by the algorithm in such a situation is obviously i.

Cavg(n) =(n+ 1)/2

5. Orders of growth

Big oh , Big omega and Big Theta notations described above 2 Question.
Discuss important problem types that you face during Algorithm Analysis.

sorting
Rearrange the items of a given list in ascending order.
Input: A sequence of n numbers <a1, a2, …, an>

Output: A reordering <a´1, a´2, …, a´n> of the input sequence such

that a´1≤a´2 ≤… ≤a´n.

A specially chosen piece of information used to guide sorting. I.e.,
sort student records by names.
Examples of sorting algorithms
Selection sort
Bubble sort
Insertion sort
Merge sort
Heap sort …

Evaluate sorting algorithm complexity: the number of key

comparisons.
Two properties
Stability: A sorting algorithm is called stable if it preserves the
relative order of any two equal elements in its input.
In place: A sorting algorithm is in place if it does not require extra
memory, except, possibly for a few memory units.

searching
Find a given value, called a search key, in a given set.
Examples of searching algorithms

Sequential searching
Binary searching…

string processing
A string is a sequence of characters from an alphabet.
Text strings: letters, numbers, and special characters.
String matching: searching for a given word/pattern in a text.

graph problems
Informal definition

A graph is a collection of points called vertices, some of
which are connected by line segments called edges.

Modeling real-life problems
Modeling WWW
communication networks
Project scheduling …

Examples of graph algorithms
Graph traversal algorithms
Shortest-path algorithms
Topological sorting

combinatorial problems
geometric problems,

	UNIT –I
	About This algorithm
	Consecutive Integer Algorithm
	About This algorithm (1)
	Middle-school procedure
	t[n] Ω[g[n]] iff t[n] >=cg[n] for n > n0
	Informal Definitions: Big O, Ω, Θ
	Basic Efficiency classes:
	Mathematical Analysis of Recursive Algorithms
	ALGORITHM TOH(n, A, C, B)
	Mathematical Analysis of Non-Recursive Algorithms
	Figure : Algorithm design and analysis process
	4. Decision making
	d. Proving an algorithm’s correctness
	e. Analyzing an algorithm
	algorithm
	Discuss Fundamentals of the analysis of algorithm efficiency elaborately.
	Cavg(n) =(n+ 1)/2
	Discuss important problem types that you face during Algorithm Analysis.
	Examples of sorting algorithms
	Evaluate sorting algorithm complexity: the number of key comparisons.

