
 

 

UNIT-V 
 

State the subset-sum problem and Complete state-space tree of the 

backtracking algorithm applied to the instance A={3, 5, 6, 7} and d=15 

of the subset-sum problem.[M-16] 

The subset-sum problem finds a subset of a given set A = {a1, . . . , an} of n 

positive integers whose sum is equal to a given positive integer d. For example, for A = 

{1, 2, 5, 6, 8} and d = 9, there are two solutions: {1, 2, 6} and {1, 8}. Of course, some 

instances of this problem may have no solutions. 

It is convenient to sort the set‘s elements in increasing order. So, we will assume that 

a1< a2 < . . . < an. For Example, 

A = {3, 5, 6, 7} and d = 15 of the subset-sum problem. The number inside a node is the 

sum 

of the elements already included in the subsets represented by the node. The 

inequality below a leaf indicates the reason for its termination. 
 

 

 

 

 

 

FIGURE Complete state-space tree of the backtracking algorithm applied to the instance 

The state-space tree can be constructed as a binary tree like that in the instance A = 

{3, 5, 6, 7} and d = 15. 



 

The root of the tree represents the starting point, with no decisions about the given 

elements made as yet. 

Its left and right children represent, respectively, inclusion and exclusion of a1 in a 

set being sought. Similarly, going to the left from a node of the first level 

corresponds to inclusion of a2 while going to the right corresponds to its 

exclusion, and so on. 

Thus, a path from the root to a node on the ith level of the tree indicates which of 

the first I numbers have been included in the subsets represented by that node. We 

record the value of s, the sum of these numbers, in the node. 

If s is equal to d, we have a solution to the problem. We can either report this 

result and stop or, if all the solutions need to be found, continue by backtracking 

to the node‘s parent. 

If s is not equal to d, we can terminate the node as non-promising if either of the 

following two inequalities holds: 

+ i+1 > [the sum s is too 

large], s + 

= +1 j < d [the sum s is too small]. 

APPROXIMATION ALGORITHM FOR NP HARD PROBLEMS 

A polynomial-time approximation algorithm is said to be a approximation algorithm, 

where c ≥ 1, if the 

accuracy ratio of the approximation it produces does not exceed c for any instance of the 

problem in question: r(sa) ≤ c. 

KNAPSACK PROBLEM 

The knapsack problem, given n items of known weights w1, . . . , wn and values v1, . 

. . , vn and a knapsack of weight capacity W, find the most valuable subset of the 

items that fits into the knapsack. 

 
Greedy algorithm for the discrete knapsack problem 

Step 1 Compute the value-to-weight ratios ri= vi/wi, i = 1, . . . , n, for the items given. 

Step 2 Sort the items in non-increasing order of the ratios computed in Step 1. 

Step 3 Repeat the following operation until no item is left in the sorted list: if the 

current item on the list fits into the knapsack, place it in the knapsack and proceed to 

the next item; otherwise, just proceed to the next item. 



 

 

 
 

 

 
 

K-A PPROXIMATION SCHEME 

Approximation Schemes We now return to the discrete version of the knapsack 

problem. For this problem, unlike the traveling salesman problem, there exist 

polynomial-time approximation schemes, which are parametric families of algorithms 

that allow us to get approximations s(k) a with any predefined accuracy level: 

 

where k is an integer parameter in the range 0 ≤ k < n. 



 

 

 

 
 

 
 

TRAVELING SALESMAN PROBLEM 

Greedy Algorithms for the TSP 

The simplest approximation algorithms for the traveling salesman problem are based on 

the greedy technique.. 

Nearest-neighbor algorithm 

 
The following well-known greedy algorithm is based on the nearest-neighbor heuristic: 

always go next to the nearest unvisited city. 

Step 1 Choose an arbitrary city as the start. 

Step 2 Repeat the following operation until all the cities have been visited:go to the 

unvisited city nearest the 

one visited last (ties can be broken arbitrarily). 

Step 3 Return to the starting city. 



 

For Example, 

 

 

Multifragment-heuristic algorithm 
 

Step 1 Sort the edges in increasing order of their weights. (Ties can be broken 

arbitrarily.) Initialize the set of tour edges to be constructed to the empty set. 

Step 2 Repeat this step n times, where n is the number of cities in the instance being 

solved: add the next edge on the sorted edge list to the set of tour edges, provided this 

addition does not create a vertex of degree 3 or a cycle of length less than n; otherwise, 

skip the edge. 

Step 3 Return the set of tour edges. 

As an example, applying the algorithm to the above graph yields {(a, b), (c, d), (b, c), (a, d)}. 
This set of edges forms the same tour as the one produced by the nearest-neighbor algorithm. In general, 
the multifragment-heuristic algorithm tends to produce significantly better tours than the nearest-neighbor 
algorithm, as we are going to see from the experimental data quoted at the end of this section. But the 
performance ratio of the multifragment-heuristic algorithm is also unbounded, of course. 

 

Minimum-Spanning-Tree–Based Algorithms 
There are approximation algorithms for the traveling salesman problem that exploit a connection between 
Hamiltonian circuits and spanning trees of the same graph. Since removing an edge from 

a Hamiltonian circuit yields a spanning tree, we can expect that the structure of a minimum spanning tree provides 

a good basis for constructing a shortest tour approximation. Here is an algorithm that implements this idea in a 

rather straightforward fashion. 

Twice-around-the-tree algorithm 
Step 1 Construct a minimum spanning tree of the graph corresponding to a given instance of the traveling 
salesman problem. 

Step 2 Starting at an arbitrary vertex, perform a walk around the minimum spanning tree recording all the 
vertices passed by. (This can be done by a DFS traversal.) 

Step 3 Scan the vertex list obtained in Step 2 and eliminate from it all repeated occurrences of the same 

vertex except the starting one at the end of the list. (This step is equivalent to making shortcuts in the 
walk.) The vertices remaining on the list will form a Hamiltonian circuit, which is the output of the 



 

 

algorithm. 

 
EXAMPLE 2 Let us apply this algorithm to the graph in Figure 12.11a. The 
minimum spanning tree of this graph is made up of edges (a, b), (b, c), (b, d), and 

(d, e) (Figure 12.11b). A twice-around-the-tree walk that starts and ends at a is a, b, c, b, d, e, d, b, a. 

Eliminating the second b (a shortcut from c to d), the second d, and the third b (ashortcut from e 

to a) yields the Hamiltonian circuita, b, c, d, e, a of length 39. 
 

 

 

 

 

 

 

 

 

 

3. Using an example prove that, satisfiability of Boolean formula in 3-conjunctive 

normal form is NP-Complete. Or Briefly explain NP-Hard and NP-Completeness 

with example. Or Write short notes on 

deterministic and non-deterministic algorithms. 

 
Class P: An algorithm solves a problem in polynomial time if its worst-case time 

efficiency belongs to O(p(n)) where p(n) is a polynomial of the problem‘s input 

size n. (Note that since we are using big-oh notation here, problems solvable in, 

say, logarithmic time are solvable in polynomial time as well.) Problems that can 
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be solved in polynomial time are called tractable, and problems that cannot be 

solved in polynomial time are called intractable. 

Class P is a class of decision problems that can be solved in polynomial 

time by (deterministic) algorithms. This class of problems is called 

polynomial. (Class P) 

Examples: Searching, Element uniqueness, primality test, graph acyclicity 

 
Class NP: A nondeterministic algorithm is a two-stage procedure that takes as its 

input an instance I of a decision problem and does the following. Nondeterministic 

(―guessing‖) stage: An arbitrary string S is generated that can be thought of as a 

candidate solution to the given instance I (but may be complete gibberish as well). 

Class NP is the class of decision problems that can be solved by 

nondeterministic polynomial algorithms. This class of problems is called 

nondeterministic polynomial. 

Examples: TSP, AP, Graph coloring problem, partition problem, 

Hamiltonian circuit proble 

 

 
 

Class- NP Complete: A decision problem D1 is said to be polynomially reducible 

to a decision problem D2, if there exists a function t that transforms instances of D1 

to instances of D2 such that: 

1. t maps all yes instances of D1 to yes instances of D2 and all no instances of D1 to 

no instances of D2 

2. t is computable by a polynomial time algorithm 

 
1. it belongs to class NP 

2. every problem in NP is polynomially reducible to D 



 

 

 

 

 

 

 

 
 

 
 

4. Solve n-Queens problem. Or Explain 8-Queens problem with an algorithm. Explain 

why backtracking is the default procedure for solving problems. Or Explain 8 

Queens problem with example.[M-14][N-13] [N-14] 



 

 

The n-queens problem is to place n queens on an n × n chessboard so that no two 

queens attack each other by being in the same row or in the same column or on the 

same diagonal. 
 
 



 

 

 

 
 

 

 

 
 

 

 

 

State space tree for 4-queen problem. Similar to other queen problem also. 

 

 
Algorithm place(k,I) 

{ 

for j := 1 to k-1 do 
if(x[j]=I) or(abs(x[j]-I)=abs(j-k))) then return false; 

return true; 



 

 

} 

Algorithm Nqueens(k,n) 

{ 

for I:= 1 to n do 

{ 

if( place(k,I) then 

{ 

x[k]:= I; 
if(k=n) then write(x[1:n]); 

else 

Nqueens(k+1,n) } } } 

 

 

Hamiltonian Circuit Problem 
As our next example, let us consider the problem of finding a Hamiltonian circuit in the graph in 

followingFigure 

Without loss of generality, we can assume that if a Hamiltonian circuit exists,it starts at vertex a. 

Accordingly, we make vertex a the root of the state-space The first component of our future 

solution, if it exists, is a first intermediate vertex of a Hamiltonian circuit to be constructed. 

Using the alphabet order to break the three-way tie among the vertices adjacent to a, we select 

vertex b. From b, the algorithm proceeds to c, then to d, then to e, and finally to f, which proves 

to be a dead end. So the algorithm backtracks from f to e, then to d, and then to c, which provides 

the first alternative for the algorithm to pursue. Going from c to e eventually proves useless, and 

the algorithm has to backtrack from e to c and then to b. From there, it goes to the vertices f , e, c, 

and d, from which it can legitimately return to a, yielding the Hamiltonian circuit a, b,f , e, c, d, 

a. If we wanted to find another Hamiltonian circuit, we could continue 

this process by backtracking from the leaf of the solution found. 



 

 

 
 

 
 

 

 

 

 

 

Assignment Problem 
Let us illustrate the branch-and-bound approach by applying it to the problem of assigning n people to n 

jobs so that the total cost of the assignment is as smallas possible. We introduced this problem in Section 

3.4, where we solved it by exhaustive search. Recall that an instance of the assignment problem is 

specified by an n × n cost matrix C so that we can state the problem as follows: select one element in 

each row of the matrix so that no two selected elements are in the same column and their sum is the 
smallest possible. 



 

 

 

 
 

 



 

 

 

 
 

 

 

 

How can we find a lower bound on the cost of an optimal selection withoutactually solving the 
problem?We can do this by several methods. For example, it is clear that the cost of any solution, 

including an optimal one, cannot be smaller than the sum of the smallest elements in each of the 

matrix’s rows. For the instance here, this sum is 2 + 3+ 1+ 4 = 10. It is important to stress that this is not 

the cost of any legitimate selection (3 and 1 came from the same column of the matrix); it is just a lower 

bound on the cost of any legitimate selection. We can and will apply the same thinking to partially 
constructed solutions. For example, for any legitimate selection that selects 9 from the first row, the lower 

bound will be9 + 3 + 1+ 4 = 17. 



 

 

 

Knapsack Problem 
A simple way to compute the upper bound ub is to add to v, the total value of the items already selected, 

the product of the remaining capacity of the knapsack W − w and the best per unit payoff among the 

remaining items, which is vi+1/wi+1: 

ub = v + (W − w)(vi+1/wi+1). 

Consider the following problem, 
 
 

 

 

 
 



 

 

 

The solution is the items 1 and 3 are included with maximum profit value of 65 

 
Traveling Salesman Problem 

For each city i, 1≤ i ≤ n, find the sum si of the distances from city i to the two nearest cities; compute the 

sum s of these n numbers, divide the result by 2, and, if all the distances are integers,round up the result to 

the nearest integer: 

lb = _s/2_. (12.2) 

For example, for the instance in Figure 12.9a, formula (12.2) yields lb = _[(1+ 3) + (3 + 6) + (1+ 2) + (3 + 
4) + (2 + 3)]/2_ = 14. 

 

 
 

 
To reduce the amount of potential work, we take advantage of twoobservations made in Section 3.4. First, 

without loss of generality, we can consider only tours that start at a. Second, because our graph is 

undirected, we can generate only tours in which b is visited before c. In addition, after visiting n − 1= 4 

cities,a tour has no choice but to visit the remaining unvisited city and return to the 

starting one. 

 

 
The optimal solution is the tour with a,b,d,e,c,a with tour length of 16. 
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