
UNIT-III

Explain Knapsack problem using Dynamic Programming
The problem

• Find the most valuable subset of the given n items that fit into a knapsack
of capacity W.

Consider the following sub problem P(i, j)
• Find the most valuable subset of the first i items that fit into a knapsack of

capacity j, where 1 i n, and 1 j W

• Let V[i, j] be the value of an optimal solution to the above subproblem P(i,

j). Goal: V[n, W]

Thus, the value of an optimal solution among all feasible subsets of the first I items is the
maximum of these two values. Of course, if the ith item does not fit into the knapsack,
the value of an optimal subset selected from the first i items is the same as the value of an
optimal subset selected from the first i − 1 items.

These observations lead to the following recurrence:

Explain Memory Function algorithm for the Knapsack problem
The Knapsack Problem and Memory Functions

• The Recurrence
a. Two possibilities for the most valuable subset for the subproblem P(i, j)

i. It does not include the ith item: V[i, j] = V[i-1, j]
ii. It includes the ith item: V[i, j] = vi+ V[i-1, j – wi]

V[i, j] = max{V[i-1, j], vi+ V[i-1, j – wi] }, if j – wi

V[i-1, j] if j – wi < 0

Memory functions:
V[0, j] = 0 for j and V[i, 0] = 0 for i

• Memory functions: a combination of the top-down and bottom-up method.
The idea is to solve the subproblems that are necessary and do it only once.

• Top-down: solve common subproblems more than once.

• Bottom-up: Solve subproblems whose solution are not necessary for the
solving the original problem.

0

0 0

ALGORITHM MFKnapsack(i, j)
if V[i, j] < 0 //if subproblem P(i, j) hasn‘t been solved yet.

if j < Weights[i]
value MFKnapsack(i – 1, j)

else
value max(MFKnapsack(i – 1, j),

values[I] + MFKnapsck(i – 1, j – Weights[i]))
V[i, j] value

return V[i, j]

Write short notes on optimal binary search tree. Or Write an algorithm to construct the

optimal binary search tree given the roots r(i,j), 0<=i<=j<=n. Also prove that this could

be performed in time O(n)

Let C[i,j] be minimum average number of comparisons made in T[i,j], optimal BST

for keys ai < …< aj

, where 1 ≤ i ≤ j ≤ n. Consider optimal BST among all BSTs with some ak (i ≤ k ≤ j) as

their root; T[i,j] is the best among them.

ALGORITHM Optimal BST(P [1..n])

//Finds an optimal binary search tree by dynamic programming

//Input: An array P[1..n] of search probabilities for a sorted list of n keys

//Output: Average number of comparisons in successful searches in the

// optimal BST and table R of subtrees‘ roots in the

optimal BST for i ←1 to n do

C[i, i −

1]←0 C[i,

i]←P[i] R[i,

i]←i

C[n + 1, n]←0

for d ←1 to n − 1 do //diagonal

count for i ←1 to n − d do

j ←i + d

minval←∞

for k←i to j

do

if C[i, k − 1]+ C[k + 1, j]< minval

minval←C[i, k − 1]+ C[k + 1, j];

kmin←k R[i, j]←kmin

sum←P[i]; for s ←i + 1 to j do

sum←sum + P[s] C[i, j]←minval + sum

return C[1, n], R

 0 1 j n

1 0 p 1 goal

 0 p 2

i C[i,j]

n+1 0

Running time of this algorithm: Time Efficiency Θ(n2) and Space

Efficiency : Θ(n3) For Example,

p n

STUDENTSFOCUS
.COM

MINIMUM SPANNING TREE

A spanning tree of an undirected connected graph is its connected acyclic

subgraph [i.e., a tree] that contains all the vertices of the graph. If such a graph has

weights assigned to its edges, a minimum spanning tree is its spanning tree of the

smallest weight, where the weight of a tree is defined as the sum of the weights on

all its edges.

The minimum spanning tree problem is the problem of finding a minimum spanning tree

for a given weighted connected graph.

PRIM’S ALGORITHM

Prim‘s algorithm constructs a minimum spanning tree through a sequence of expanding

sub trees. The initial sub tree in such a sequence consists of a single vertex selected

arbitrarily from the set V of the graph‘s vertices. On each iteration, the algorithm

expands the current tree in the greedy manner by simply attaching to it the nearest vertex

not in that tree.

ALGORITHM Prim[G]

//Prim‘s algorithm for constructing a minimum

spanning tree //Input: A weighted connected graph

G = V, E
//Output: ET , the set of edges composing a minimum
spanning tree of G VT←{v0} //the set of tree vertices can be
initialized with any vertex ET←∅

for i ←1 to |V| − 1 do
find a minimum-weight edge e∗ = [v∗ , u∗] among all
the edges [v, u] such that v is in VT and u is in V − VT
VT←VT𝖴 {u∗ }
ET←ET𝖴 {e∗ }

return ET

FLOYD’S ALGORITHM

Given a weighted connected graph (undirected or directed), the all-pairs shortest

paths

problem asks to find the distances—i.e., the lengths of the shortest paths— from each

vertex to all other

vertices.

ALGORITHM Floyd(W[1..n, 1..n])

//Implements Floyd‘s algorithm for the all-pairs shortest-

paths problem //Input: The weight matrix W of a graph

with no negative-length cycle //Output: The distance matrix

of the shortest paths‘ lengths

D ←W //is not necessary if W can be overwritten

for k←1 to n do

for i ←1 to n do

for j ←1 to n do

D[i, j]←min{D[i, j], D[i, k]+ D[k, j]}

return D

Efficiency of Floyd‘s Algorithm: Time efficiency Θ(n3) and Space Efficiency is Θ(n2)

For Example,

Write the procedure to compute Huffman code.

Suppose we have to encode a text that comprises symbols from some n-symbol

alphabet by assigning to each of the text‘s symbols some sequence of bits called the

code word. For example, we can use a fixed-length encoding that assigns to each

symbol a bit string of the same length m

(m ≥ log2 n).

Step 1 Initialize n one-node trees and label them with the symbols of the alphabet

given. Record the frequency of each symbol in its tree‘s root to indicate the tree‘s

weight. (More generally, the weight of a tree will be equal to the sum of the

frequencies in the tree‘s leaves.)

Step 2 Repeat the following operation until a single tree is obtained. Find two trees

with the smallest weight. Make them the left and right sub tree of a new tree and

record the sum of their weights in the root of the new tree as its weight.

A tree constructed by the above algorithm is called a Huffman tree. It defines—in

the mannerdescribed above—a Huffman code.

	Explain Knapsack problem using Dynamic Programming The problem
	Consider the following sub problem P(i, j)
	Explain Memory Function algorithm for the Knapsack problem
	ALGORITHM Optimal BST(P [1..n])
	MINIMUM SPANNING TREE
	PRIM’S ALGORITHM
	ALGORITHM Prim[G]
	FLOYD’S ALGORITHM

