UNIT-111

Explain Knapsack problem using Dynamic Programming

-~ The problem
« Find the most valuable subset of the given n items that fit into a knapsack
of capacity W.

7 Consider the following sub problem P(i, j)
+ Find the most valuable subset of the first i items that fit into a knapsack of
capacity j, where1 L i LUn,and1_ j U W
« Let V[i, j] be the value of an optimal solution to the above subproblem P(i,
J)- Goal: V[n, W]

Thus, the value of an optimal solution among all feasible subsets of the first I items is the
maximum of these two values. Of course, if the ith item does not fit into the knapsack,
the value of an optimal subset selected from the first i items is the same as the value of an
optimal subset selected from the first i — 1 items.
These observations lead to the following recurrence:

Fi. j)= max{F(i — 1, j), v, + F(i = 1, j —w;)} if j —w; =0,

| Fi-1.)) ifj—w, <0. &0

It is convenient to define the initial conditions as follows:

F(O, jy=0forj=0 and F(@ 0)=0 fori=10. (8.7)

Figure 8.4 illustrates the values involved in equations (8.6) and (8.7). For
i, j =0, to compute the entry in the ith row and the jth column, F(i, j), we
compute the maximum of the entry in the previous row and the same column
and the sum of v; and the entry in the previous row and w; columns to the left.
The table can be filled either row by row or column by column.

| =W, W
0|0 0 0 0
=110 Fli=1, j-w;) Fii-1, 1)
w,v. |0 Fi)
n |0 goal

FIGURE 8.4 Table for solving the knapsack problem by dynamic programming.

capacity j

i o 1 2 3 4 5

0 o 0 0 ©0 0 0

w=2v=12 1 0o 0 12 12 12 12
wy=11,=10 2 0 10 12 2 2 2N
wy=3,13=20 3 0o 0 12 2 30 R
wy=2v1,=15 4 D 10 15 25 30 37

FIGURE 8.5 Example of solving an instance of the knapsack problem by the dynamic
programming algorithm.

EXAMPLE 1 Let us consider the instance given by the following data:

item weight value
1 2 $12
2 1 $10 capacity W =5.
3 3 $20
4 2 $15

The dynamic programming table, filled by applying formulas (8.6) and (8.7),
is shown in Figure 8.5.

Thus, the maximal value is F(4, 5) =$37. We can find the composition of an
optimal subset by backtracing the computations of this entry in the table. Since
F{4,5) = F(3, 5; item 4 has to be included in an optimal solution along with an
optimal subset for filling 5 — 2 = 3 remaining units of the knapsack CHPHCII} The
value of the latter is F(3, 3). Since F(3,3)= F(2, 3), item 3 need not be in an
optimal subset. Since F(2, 3) = F(1, 3), item 2 is a part of an optimal selection,
which leaves element F(1, 3 — 1) to specify its remaining composition. Similarly,
since F(1,2) = F(0, 2), item 1 is the final part of the optimal solution {item 1,
item 2, item 4. [|

Explain Memory Function algorithm for the Knapsack problem
- The Knapsack Problem and Memory Functions

» The Recurrence
a. Two possibilities for the most valuable subset for the subproblem P(i, j)

I. It does not include the ith item: V[i, j] = V[i-1,]
ii. Itincludes the ith item: Vi, j] = vi+ V[i-1, j — w;
VIi, j1 = max{V[i-1, j], vi+ V[i-1, J—wi] }, ifj—wi | 0
V[i-l, il ifj—wi<O0
V[0,j]=0forj L Oand V[i,0] =0fori L O

- Memory functions:

Memory functions: a combination of the top-down and bottom-up method.
The idea is to solve the subproblems that are necessary and do it only once.
Top-down: solve common subproblems more than once.

Bottom-up: Solve subproblems whose solution are not necessary for the
solving the original problem.

- ALGORITHM MFKnapsack(i, |)
if V[i, j] <0 //if subproblem P(i, j) hasn‘t been solved yet.
if j < Weights][i]
value - MFKnapsack(i — 1, j)

else
value 'max(MFKnapsack(i — 1, j),
vaIuesFI] + MFKnapsck(i — 1, j — Weights[i]))
Vi, j] - value
return Vi, j]

capacity j
i 0 1 2 3 4 5
0 0 0 0

w=2 =12 1 0 0o 12 12 12 12
wy=11n=10 2 o - 12 2 - 2
wy=3 mn=2 3 0 — — 1 - R
wy=2 1y=15 4 0 o - — — 37

FIGURE 8.6 Example of =olving an instance of the knapsack problem by the memaory
function algorithm.

Write short notes on optimal binary search tree. Or Write an algorithm to construct the
optimal binary search tree given the roots r(i,j), 0<=i<=j<=n. Also prove that this could
be performed in time O(n)

Let C[i,j] be minimum average number of comparisons made in T[i,j], optimal BST
for keys ai < ...<aj
,Where 1 <i <j<n. Consider optimal BST among all BSTs with some ak (i <k <j) as
their root; T[i,j] is the best among them.

ALGORITHM Optimal BST(P [1..n])

/[Finds an optimal binary search tree by dynamic programming

/lInput: An array P[1..n] of search probabilities for a sorted list of n keys
/[Output: Average number of comparisons in successful searches in the
/loptimal BST and table R of subtrees® roots in the

optimal BST for i «1 to n do

Cli, i —

110 CIai,

i]«P[i] R[i,

1]«

C[n+1,n]<0

for d <1 to n—1 do //diagonal
count fori«<1ton—ddo
j—i+d

minval«—oo

for ke—ito j

do

if C[i, k—1]+ C[k + 1, j]< minval
minval«—C[i, k — 1]+ C[k + 1, j];
kmin<k R[i, j]«—kmin
sum<«—P[i]; for s «i+ 1to j do
sum«—sum + P[s] C[i,]]«—minval + sum
return C[1, n], R

0 1 j n
1 0 p1 goal
0 P2

C[i.j]

n+1

I— pn

D

Running time of this algorithm: Time Efficiency ®(n2) and Space

Efficiency : ®(n3) For Example,

EXAMPLE: Let us illustrate the algorithm by applying it to the four-key set we used at the
beginning of this section:

key A B C D
probability 0.1 0.2 0.4 0.3
The initial tables are:

main table root table
0 1 2 3 4 0 1 2 3 4
1 0 01 1 1
2 0 0.2 2 2
3 0 0.4 3 3
4 0 0.3 4 4
5 0 5

Let us compute C(1, 2):
k=1 C€(1,04+C2,2)+Y2,p.=04+024+03=0.5
C(1.2) =min R
k=2 C(LH+C3,2)+3 . ,p,=01+0+03=04
=04.

Thus, out of two possible binary trees containing the first two keys, A and B, the root of the
optimal tree has index 2 (i.e., it contains B), and the average number of comparisons in a successful
search in this tree is 0.4.

We arrive at the following final tables:

main table root table
0 1 2 3 4 0 1 2 3 4
1 0 0.1 0.4 11 1.7 1 1 2 3 3
2 0 0.2 08 14 2 2 3 B
3 0 04 1.0 3 3 3
4 0 0.3 4 4
5 0 5

Thus, the average number of key comparisons in the optimal tree is equal to 1.7. Since R(1,
4) = 3, the root of the optimal tree contains the third key, i.e., C. Its left subtree is made up of keys
A and B, and its right subtree contains just key D. To find the specific structure of these subtrees,
we find first their roots by consulting the root table again as follows. Since R(1, 2) = 2, the root of
the optimal tree containing A and B is B, with A being its left child (and the root of the one node

tree: R(1, 1) = 1). Since R(4, 4) = 4, the root of this one-node optimal tree is its only key D. Figure
3.10 presents the optimal tree in its entirety.

O/ﬁ\>

FIGURE 3.10 Optimal binary search tree for the above example.

MINIMUM SPANNING TREE
A spanning tree of an undirected connected graph is its connected acyclic
subgraph [i.e., a tree] that contains all the vertices of the graph. If such a graph has

weights assigned to its edges, a minimum spanning tree is its spanning tree of the
smallest weight, where the weight of a tree is defined as the sum of the weights on

all its edges.

The minimum spanning tree problem is the problem of finding a minimum spanning tree
for a given weighted connected graph.

PRIM’S ALGORITHM

Prim‘s algorithm constructs a minimum spanning tree through a sequence of expanding
sub trees. The initial sub tree in such a sequence consists of a single vertex selected
arbitrarily from the set V of the graph‘s vertices. On each iteration, the algorithm
expands the current tree in the greedy manner by simply attaching to it the nearest vertex
not in that tree.

ALGORITHM Prim[G]

//Prim‘s algorithm for constructing a minimum

spanning tree //Input: A weighted connected graph

G=V,E

/[Output: ET , the set of edges composing a minimum

spanning tree of G VT«—{v0} //the set of tree vertices can be
initialized with any vertex ET«—@

fori—1to|V|—1do

find a minimum-weight edge ex = [vx, ux] among all
the edges [v, u] such that visin VT anduisinV—VT
VT«—VTU {u* }
ET—ETU {ex }

return ET

s
G
i =
Tree vertices Remaining vertices Hiastration
af—, —) b(a. 3) c(—, o) d(—, o) 1

eia. & fia, 5

b(a, 3) c(b, 1) d(—, o0) e(a, &)
f(b. 4)
cib. 1) dic. 6) ea.6) b, &)
fb. 1) dif,. 5) ef. 2)
edf, 2) dd. 5,
df. 5)
AGURE 9.3 Applicaton of Prim’s algonithm. The parenthesized labels of 2 vertex in the

middie column indicata the nearest tree vertex and adge weight; selected
vartices and edgses are shown in boid.

FLOYD’S ALGORITHM
Given a weighted connected graph (undirected or directed), the all-pairs shortest
paths
problem asks to find the distances—i.e., the lengths of the shortest paths— from each
vertex to all other

vertices.
ALGORITHM Floyd(W[1..n, 1..n])
//Tmplements Floyd*‘s algorithm for the all-pairs shortest-
paths problem //Input: The weight matrix W of a graph
with no negative-length cycle //Output: The distance matrix
of the shortest paths‘ lengths

D «—W //is not necessary if W can be overwritten

for k—1tondo

fori <1 tondo

forj«1tondo

D[i, j]«min{D[i, j], DIi, K]+ D[k, j1}

return D
Efficiency of Floyd‘s Algorithm: Time efficiency ®(n3) and Space Efficiency is ®(n2)
For Example,

i/ a }‘.—2 ’/5\\ _a b ¢ *d -
~ 3| [0] © 3 eof ‘Lengths of the shortest paths ‘with no
3| 67 po- P1|2] 9 = = | intermediate vertices (D is simply the
\/) Cll=| 7 0 '} weight matrix):.
XD als] = = 0]

a b cd 1 o
a0 [=] 3 o | Lengths of the shertest paths with
b|[2 [0] 5 | intermediate vertices numbered ‘not higher

DM = bl B BN
ol = 770 1 | than I, ie, just a (notetwo new shortest
d| 6 |o] 9 0 paths-from b to ¢ and from d'to ¢).
: a b c d :
al 0 = |3 = | Lengths of the shortest ipaths with
D2 = b '2 0 |5 * | intermedidte vertices numbered. not higher
¢l (9 7 [0]]| than 2, ie. a and ‘b (note a new shortest
d| 6 e |9] O | pathfrom ctoa).
a b ¢ d_ ,
al 0 10 3[4 L{ength's of the shortest paths with
bl 2 0 5 ||| intermediate vertices numbered:not higher
DB = 6| R N .
¢l 9 7 o [1]| than 3, ie, a, b, and ¢ {rote four new
d|[6 16 9 |0]| shortest paths .from a to b, from a to d,
. — 1 ‘from b to d.,and from d to:b).
3 b ¢ 4 _
al 0 10 3 4 | fLengths of the shortést :paths with
D) = bl 2 0 5 6 | intermedidte vertices numbered not higher
¢l 7 7 0 T | thai 4, ie., a, b, ¢, and d {note a new
di 6 16 9 0O | shortest path:from ¢ to a).

FIGURE 3.5 Application of Floyd's algorithm to the digraph shown. Updated elements are shown
in bold.

Write the procedure to compute Huffman code.

Suppose we have to encode a text that comprises symbols from some n-symbol

alphabet by assigning to each of the text‘s symbols some sequence of bits called the

code word. For example, we can use a fixed-length encoding that assigns to each

symbol a bit string of the same length m

(m>1log2 n).

Step 1 Initialize n one-node trees and label them with the symbols of the alphabet
given. Record the frequency of each symbol in its tree‘s root to indicate the tree‘s
weight. (More generally, the weight of a tree will be equal to the sum of the
frequencies in the tree‘s leaves.)

Step 2 Repeat the following operation until a single tree is obtained. Find two trees
with the smallest weight. Make them the left and right sub tree of a new tree and
record the sum of their weights in the root of the new tree as its weight.

A tree constructed by the above algorithm is called a Huffman tree. It defines—in
the mannerdescribed above—a Huffman code.

EXAMPLE Consider the five-symbol alphabet {A, B, C, D, _} with the following occurre
frequencies in a text made up of these symbols:

symbol | A B C D .
frequency | 035 0.1 02 02 0.5
The Huffman tree construction for this input is shown in Figure 3.18

O.1 0.15 0.2 0.2 0.35
C D A

0.1 0.15

B =

FIGURE 3.18 Example of constructing a Huffman coding tree.

	Explain Knapsack problem using Dynamic Programming The problem
	Consider the following sub problem P(i, j)
	Explain Memory Function algorithm for the Knapsack problem
	ALGORITHM Optimal BST(P [1..n])
	MINIMUM SPANNING TREE
	PRIM’S ALGORITHM
	ALGORITHM Prim[G]
	FLOYD’S ALGORITHM

