

UNIT 5 Physical Storage and MongoDB

Data Storage and Indexes – RAID- File organization-Indexing and Hashing –Ordered Indices – B+

tree Index Files – B tree Index Files – Static Hashing – Dynamic Hashing. Query Processing

Overview. MongoDB, Database creation and manipulation, Indexing and ordering-CASE Studies-

Oracle,DB2: Storage and Indexing

INDEXING IN DBMS

o Indexing is used to optimize the performance of a database by minimizing the

number of disk accesses required when a query is processed.

o The index is a type of data structure. It is used to locate and access the data in a

database table quickly.

Index structure:

Indexes can be created using some database columns.

o The first column of the database is the search key that contains a copy of the

primary key or candidate key of the table. The values of the primary key are stored

in sorted order so that the corresponding data can be accessed easily.

o The second column of the database is the data reference. It contains a set of

pointers holding the address of the disk block where the value of the particular

key can be found.

Indexing Methods

 SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

AN AUTONOMOUS INSTITUTION

Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

Ordered indices

The indices are usually sorted to make searching faster. The indices which are sorted are
known as ordered indices.

Example: Suppose we have an employee table with thousands of record and each of
which is 10 bytes long. If their IDs start with 1, 2, 3....and so on and we have to search
student with ID-543.

o In the case of a database with no index, we have to search the disk block from

starting till it reaches 543. The DBMS will read the record after reading

543*10=5430 bytes.

o In the case of an index, we will search using indexes and the DBMS will read the

record after reading 542*2= 1084 bytes which are very less compared to the

previous case.

Primary Index

o If the index is created on the basis of the primary key of the table, then it is known

as primary indexing. These primary keys are unique to each record and contain

1:1 relation between the records.

o As primary keys are stored in sorted order, the performance of the searching

operation is quite efficient.

o The primary index can be classified into two types: Dense index and Sparse index.

Dense index

o The dense index contains an index record for every search key value in the data

file. It makes searching faster.

o In this, the number of records in the index table is same as the number of records

in the main table.

o It needs more space to store index record itself. The index records have the search

key and a pointer to the actual record on the disk.

Sparse index

o In the data file, index record appears only for a few items. Each item points to a

block.

o In this, instead of pointing to each record in the main table, the index points to the

records in the main table in a gap.

Clustering Index

o A clustered index can be defined as an ordered data file. Sometimes the index is

created on non-primary key columns which may not be unique for each record.

o In this case, to identify the record faster, we will group two or more columns to

get the unique value and create index out of them. This method is called a

clustering index.

o The records which have similar characteristics are grouped, and indexes are

created for these group.

Example: suppose a company contains several employees in each department. Suppose
we use a clustering index, where all employees which belong to the same Dept_ID are
considered within a single cluster, and index pointers point to the cluster as a whole. Here
Dept_Id is a non-unique key.

The previous schema is little confusing because one disk block is shared by records which
belong to the different cluster. If we use separate disk block for separate clusters, then it
is called better technique.

Secondary Index

In the sparse indexing, as the size of the table grows, the size of mapping also grows.
These mappings are usually kept in the primary memory so that address fetch should be
faster. Then the secondary memory searches the actual data based on the address got
from mapping. If the mapping size grows then fetching the address itself becomes slower.
In this case, the sparse index will not be efficient. To overcome this problem, secondary
indexing is introduced.

In secondary indexing, to reduce the size of mapping, another level of indexing is
introduced. In this method, the huge range for the columns is selected initially so that the
mapping size of the first level becomes small. Then each range is further divided into
smaller ranges. The mapping of the first level is stored in the primary memory, so that
address fetch is faster. The mapping of the second level and actual data are stored in the
secondary memory (hard disk).

For example:

o If you want to find the record of roll 111 in the diagram, then it will search the

highest entry which is smaller than or equal to 111 in the first level index. It will

get 100 at this level.

o Then in the second index level, again it does max (111) <= 111 and gets 110. Now

using the address 110, it goes to the data block and starts searching each record

till it gets 111.

o This is how a search is performed in this method. Inserting, updating or deleting

is also done in the same manner.

FILE ORGANIZATION

o The File is a collection of records. Using the primary key, we can access the

records. The type and frequency of access can be determined by the type of file

organization which was used for a given set of records.

o File organization is a logical relationship among various records. This method

defines how file records are mapped onto disk blocks.

o File organization is used to describe the way in which the records are stored in

terms of blocks, and the blocks are placed on the storage medium.

o The first approach to map the database to the file is to use the several files and

store only one fixed length record in any given file. An alternative approach is to

structure our files so that we can contain multiple lengths for records.

o Files of fixed length records are easier to implement than the files of variable

length records.

Objective of file organization

o It contains an optimal selection of records, i.e., records can be selected as fast as

possible.

o To perform insert, delete or update transaction on the records should be quick

and easy.

o The duplicate records cannot be induced as a result of insert, update or delete.

o For the minimal cost of storage, records should be stored efficiently.

Types of file organization:

File organization contains various methods. These particular methods have pros and cons
on the basis of access or selection. In the file organization, the programmer decides the
best-suited file organization method according to his requirement.

Types of file organization are as follows:

B+ TREE

o The B+ tree is a balanced binary search tree. It follows a multi-level index format.

o In the B+ tree, leaf nodes denote actual data pointers. B+ tree ensures that all leaf

nodes remain at the same height.

o In the B+ tree, the leaf nodes are linked using a link list. Therefore, a B+ tree can

support random access as well as sequential access.

Structure of B+ Tree

o In the B+ tree, every leaf node is at equal distance from the root node. The B+ tree

is of the order n where n is fixed for every B+ tree.

o It contains an internal node and leaf node.

Internal node

o An internal node of the B+ tree can contain at least n/2 record pointers except the

root node.

o At most, an internal node of the tree contains n pointers.

Leaf node

o The leaf node of the B+ tree can contain at least n/2 record pointers and n/2 key

values.

o At most, a leaf node contains n record pointer and n key values.

o Every leaf node of the B+ tree contains one block pointer P to point to next leaf

node.

Searching a record in B+ Tree

Suppose we have to search 55 in the below B+ tree structure. First, we will fetch for the
intermediary node which will direct to the leaf node that can contain a record for 55.

So, in the intermediary node, we will find a branch between 50 and 75 nodes. Then at the
end, we will be redirected to the third leaf node. Here DBMS will perform a sequential
search to find 55.

B+ Tree Insertion

Suppose we want to insert a record 60 in the below structure. It will go to the 3rd leaf
node after 55. It is a balanced tree, and a leaf node of this tree is already full, so we cannot
insert 60 there.

In this case, we have to split the leaf node, so that it can be inserted into tree without
affecting the fill factor, balance and order.

The 3rd leaf node has the values (50, 55, 60, 65, 70) and its current root node is 50. We
will split the leaf node of the tree in the middle so that its balance is not altered. So we
can group (50, 55) and (60, 65, 70) into 2 leaf nodes.

If these two has to be leaf nodes, the intermediate node cannot branch from 50. It should
have 60 added to it, and then we can have pointers to a new leaf node.

This is how we can insert an entry when there is overflow. In a normal scenario, it is very
easy to find the node where it fits and then place it in that leaf node.

B+ Tree Deletion

Suppose we want to delete 60 from the above example. In this case, we have to remove
60 from the intermediate node as well as from the 4th leaf node too. If we remove it from
the intermediate node, then the tree will not satisfy the rule of the B+ tree. So we need to
modify it to have a balanced tree.

After deleting node 60 from above B+ tree and re-arranging the nodes, it will show as
follows:

B-TREE INDEX FILES
 A B Tree Index is a multilevel index.
 A B Tree is a rooted tree satisfying the following properties :

1. All paths from the root to the leaf are equally long.

2. A node that is not a root or leaf, has between [n / 2] and ‘n’ children.

3. A leaf node has between [(n-1) / 2] and ‘n-1’ values.
The structures of leaf, non-leaf nodes of this tree is :

Example-1: Construct a B- Tree for the following search key values, where n =
3. {10, 20, 30, 40, 50}

Let’s take another example and insert, delete elements from the tree
Example-2: Construct a B- Tree for the following search key values, where n = 3.
(n is no of pointers)
{10, 20, 30, 40, 50, 60, 70, 80, 90}

1. a) Delete 20 from above tree.

1. b) Insert 65 to the above tree.

STATIC HASHING

In static hashing, the resultant data bucket address will always be the same. That means
if we generate an address for EMP_ID =103 using the hash function mod (5) then it will
always result in same bucket address 3. Here, there will be no change in the bucket
address.

Hence in this static hashing, the number of data buckets in memory remains constant
throughout. In this example, we will have five data buckets in the memory used to store
the data.

OPERATIONS OF STATIC HASHING

o Searching a record

When a record needs to be searched, then the same hash function retrieves the address
of the bucket where the data is stored.

o Insert a Record

When a new record is inserted into the table, then we will generate an address for a new
record based on the hash key and record is stored in that location.

o Delete a Record

To delete a record, we will first fetch the record which is supposed to be deleted. Then
we will delete the records for that address in memory.

o Update a Record

To update a record, we will first search it using a hash function, and then the data record
is updated.

If we want to insert some new record into the file but the address of a data bucket
generated by the hash function is not empty, or data already exists in that address. This
situation in the static hashing is known as bucket overflow. This is a critical situation in
this method.

To overcome this situation, there are various methods. Some commonly used methods
are as follows:

1. OPEN HASHING

When a hash function generates an address at which data is already stored, then the next
bucket will be allocated to it. This mechanism is called as Linear Probing.

For example: suppose R3 is a new address which needs to be inserted, the hash function
generates address as 112 for R3. But the generated address is already full. So the system
searches next available data bucket, 113 and assigns R3 to it.

2. CLOSE HASHING

When buckets are full, then a new data bucket is allocated for the same hash result and is
linked after the previous one. This mechanism is known as Overflow chaining.

For example: Suppose R3 is a new address which needs to be inserted into the table, the
hash function generates address as 110 for it. But this bucket is full to store the new data.
In this case, a new bucket is inserted at the end of 110 buckets and is linked to it.

DYNAMIC HASHING

o The dynamic hashing method is used to overcome the problems of static hashing

like bucket overflow.

o In this method, data buckets grow or shrink as the records increases or decreases.

This method is also known as Extendable hashing method.

o This method makes hashing dynamic, i.e., it allows insertion or deletion without

resulting in poor performance.

HOW TO SEARCH A KEY

o First, calculate the hash address of the key.

o Check how many bits are used in the directory, and these bits are called as i.

o Take the least significant i bits of the hash address. This gives an index of the

directory.

o Now using the index, go to the directory and find bucket address where the record

might be.

HOW TO INSERT A NEW RECORD

o Firstly, you have to follow the same procedure for retrieval, ending up in some

bucket.

o If there is still space in that bucket, then place the record in it.

o If the bucket is full, then we will split the bucket and redistribute the records.

FOR EXAMPLE:

Consider the following grouping of keys into buckets, depending on the prefix of their
hash address:

The last two bits of 2 and 4 are 00. So it will go into bucket B0. The last two bits of 5 and
6 are 01, so it will go into bucket B1. The last two bits of 1 and 3 are 10, so it will go into
bucket B2. The last two bits of 7 are 11, so it will go into B3.

Insert key 9 with hash address 10001 into the above structure:

o Since key 9 has hash address 10001, it must go into the first bucket. But bucket B1

is full, so it will get split.

o The splitting will separate 5, 9 from 6 since last three bits of 5, 9 are 001, so it will

go into bucket B1, and the last three bits of 6 are 101, so it will go into bucket B5.

o Keys 2 and 4 are still in B0. The record in B0 pointed by the 000 and 100 entry

because last two bits of both the entry are 00.

o Keys 1 and 3 are still in B2. The record in B2 pointed by the 010 and 110 entry

because last two bits of both the entry are 10.

o Key 7 are still in B3. The record in B3 pointed by the 111 and 011 entry because

last two bits of both the entry are 11.

Advantages of dynamic hashing

o In this method, the performance does not decrease as the data grows in the

system. It simply increases the size of memory to accommodate the data.

o In this method, memory is well utilized as it grows and shrinks with the data.

There will not be any unused memory lying.

o This method is good for the dynamic database where data grows and shrinks

frequently.

Disadvantages of dynamic hashing

o In this method, if the data size increases then the bucket size is also increased.

These addresses of data will be maintained in the bucket address table. This is

because the data address will keep changing as buckets grow and shrink. If there

is a huge increase in data, maintaining the bucket address table becomes tedious.

o In this case, the bucket overflow situation will also occur. But it might take little

time to reach this situation than static hashing.

Differences between Static and Dynamic Hashing
Here are some prominent differences by which Static Hashing is different than Dynamic
Hashing −

Key Factor Static Hashing Dynamic Hashing

Form of Data Fixed-size, non-changing data. Variable-size, changing data.

Result
The resulting Data Bucket is of fixed-

length.

The resulting Data Bucket is

of variable-length.

Bucket

Overflow

Challenge of Bucket overflow can

arise often depending upon memory

size.

Bucket overflow can occur

very late or doesn’t occur at

all.

Complexity Simple Complex

QUERY PROCESSING IN DBMS

Query Processing is the activity performed in extracting data from the database. In query
processing, it takes various steps for fetching the data from the database. The steps
involved are:

1. Parsing and translation

2. Optimization

3. Evaluation

The query processing works in the following way:

Parsing and Translation

As query processing includes certain activities for data retrieval. Initially, the given user
queries get translated in high-level database languages such as SQL. It gets translated into
expressions that can be further used at the physical level of the file system. After this, the
actual evaluation of the queries and a variety of query -optimizing transformations and
takes place. Thus before processing a query, a computer system needs to translate the
query into a human-readable and understandable language. Consequently, SQL or
Structured Query Language is the best suitable choice for humans. But, it is not perfectly
suitable for the internal representation of the query to the system. Relational algebra is
well suited for the internal representation of a query. The translation process in query
processing is similar to the parser of a query. When a user executes any query, for
generating the internal form of the query, the parser in the system checks the syntax of
the query, verifies the name of the relation in the database, the tuple, and finally the
required attribute value. The parser creates a tree of the query, known as 'parse-tree.'
Further, translate it into the form of relational algebra. With this, it evenly replaces all the
use of the views when used in the query.

Thus, we can understand the working of a query processing in the below-described
diagram:

Suppose a user executes a query. As we have learned that there are various methods of
extracting the data from the database. In SQL, a user wants to fetch the records of the
employees whose salary is greater than or equal to 10000. For doing this, the following
query is undertaken:

select emp_name from Employee where salary>10000;

Thus, to make the system understand the user query, it needs to be translated in the form
of relational algebra. We can bring this query in the relational algebra form as:

o σsalary>10000 (πsalary (Employee))

o πsalary (σsalary>10000 (Employee))

After translating the given query, we can execute each relational algebra operation by
using different algorithms. So, in this way, a query processing begins its working.

Evaluation

For this, with addition to the relational algebra translation, it is required to annotate the
translated relational algebra expression with the instructions used for specifying and
evaluating each operation. Thus, after translating the user query, the system executes a
query evaluation plan.

Query Evaluation Plan

o In order to fully evaluate a query, the system needs to construct a query evaluation

plan.

o The annotations in the evaluation plan may refer to the algorithms to be used for

the particular index or the specific operations.

o Such relational algebra with annotations is referred to as Evaluation Primitives.

The evaluation primitives carry the instructions needed for the evaluation of the

operation.

o Thus, a query evaluation plan defines a sequence of primitive operations used for

evaluating a query. The query evaluation plan is also referred to as the query

execution plan.

o A query execution engine is responsible for generating the output of the given

query. It takes the query execution plan, executes it, and finally makes the output

for the user query.

Optimization

o The cost of the query evaluation can vary for different types of queries. Although

the system is responsible for constructing the evaluation plan, the user does need

not to write their query efficiently.

o Usually, a database system generates an efficient query evaluation plan, which

minimizes its cost. This type of task performed by the database system and is

known as Query Optimization.

o For optimizing a query, the query optimizer should have an estimated cost analysis

of each operation. It is because the overall operation cost depends on the memory

allocations to several operations, execution costs, and so on.

Finally, after selecting an evaluation plan, the system evaluates the query and produces
the output of the query.

 MONGODB DATABASE

MongoDB is a non-relational document database that provides support for JSON-like
storage. The MongoDB database has a flexible data model that enables you to store
unstructured data, and it provides full indexing support, and replication with rich and
intuitive APIs.

The use Command

MongoDB use DATABASE_NAME is used to create database. The command will create a
new database if it doesn't exist, otherwise it will return the existing database.

Syntax

Basic syntax of use DATABASE statement is as follows −

use DATABASE_NAME
Example

If you want to use a database with name <mydb>, then use DATABASE statement would
be as follows −

>use mydb
switched to db mydb

To check your currently selected database, use the command db

>db
mydb

If you want to check your databases list, use the command show dbs.

>show dbs
local 0.78125GB
test 0.23012GB

Your created database (mydb) is not present in list. To display database, you need to
insert at least one document into it.

>db.movie.insert({"name":"tutorials point"})
>show dbs
local 0.78125GB
mydb 0.23012GB
test 0.23012GB

In MongoDB default database is test. If you didn't create any database, then collections
will be stored in test database.

The dropDatabase() Method

MongoDB db.dropDatabase() command is used to drop a existing database.

Syntax

Basic syntax of dropDatabase() command is as follows −

db.dropDatabase()

This will delete the selected database. If you have not selected any database, then it will
delete default 'test' database.

Example

First, check the list of available databases by using the command, show dbs.

>show dbs

local 0.78125GB
mydb 0.23012GB
test 0.23012GB
>

If you want to delete new database <mydb>, then dropDatabase() command would be
as follows −

>use mydb
switched to db mydb
>db.dropDatabase()
>{ "dropped" : "mydb", "ok" : 1 }
>

Now check list of databases.

>show dbs
local 0.78125GB
test 0.23012GB
>

CREATE A HASHED INDEX

To create a hashed index, specify hashed as the value of the index key, as in the following

example:

db.collection.createIndex({ _id: "hashed" })

Create a Compound Hashed Index

New in version 4.4.

Starting with MongoDB 4.4, MongoDB supports creating compound indexes that include

a single hashed field. To create a compound hashed index, specify hashed as the value of

any single index key when creating the index:

db.collection.createIndex({ "fieldA" : 1, "fieldB" : "hashed", "fieldC" : -1 })

$sort (aggregation)

Definition

https://www.mongodb.com/docs/manual/core/index-hashed/#std-label-index-type-hashed
https://www.mongodb.com/docs/manual/core/index-hashed/#create-a-hashed-index
https://www.mongodb.com/docs/manual/core/index-hashed/#create-a-compound-hashed-index
https://www.mongodb.com/docs/manual/reference/operator/aggregation/sort/#-sort--aggregation-
https://www.mongodb.com/docs/manual/reference/operator/aggregation/sort/#definition
https://www.mongodb.com/docs/manual/core/index-hashed/#create-a-hashed-index
https://www.mongodb.com/docs/manual/core/index-hashed/#create-a-compound-hashed-index
https://www.mongodb.com/docs/manual/reference/operator/aggregation/sort/#-sort--aggregation-
https://www.mongodb.com/docs/manual/reference/operator/aggregation/sort/#definition
https://www.mongodb.com/docs/manual/core/index-hashed/#create-a-hashed-index
https://www.mongodb.com/docs/manual/core/index-hashed/#create-a-compound-hashed-index
https://www.mongodb.com/docs/manual/reference/operator/aggregation/sort/#-sort--aggregation-
https://www.mongodb.com/docs/manual/reference/operator/aggregation/sort/#definition
https://www.mongodb.com/docs/manual/core/index-hashed/#create-a-hashed-index
https://www.mongodb.com/docs/manual/core/index-hashed/#create-a-compound-hashed-index
https://www.mongodb.com/docs/manual/reference/operator/aggregation/sort/#-sort--aggregation-
https://www.mongodb.com/docs/manual/reference/operator/aggregation/sort/#definition

$sort

Sorts all input documents and returns them to the pipeline in sorted order.

The $sort stage has the following prototype form:

{ $sort: { <field1>: <sort order>, <field2>: <sort order> ... } }

$sort takes a document that specifies the field(s) to sort by and the respective sort

order. <sort order> can have one of the following values:

Value Description

1 Sort ascending.

-1 Sort descending.

{ $meta: "textScore" } Sort by the computed textScore metadata in descending

order. See Text Score Metadata Sort for an example.

If sorting on multiple fields, sort order is evaluated from left to right. For example,

in the form above, documents are first sorted by <field1>. Then documents with

the same <field1> values are further sorted by <field2>.

https://www.mongodb.com/docs/manual/reference/operator/aggregation/sort/#mongodb-pipeline-pipe.-sort
https://www.mongodb.com/docs/manual/reference/operator/aggregation/sort/#mongodb-pipeline-pipe.-sort
https://www.mongodb.com/docs/manual/reference/operator/aggregation/sort/#std-label-sort-pipeline-metadata
https://www.mongodb.com/docs/manual/reference/operator/aggregation/sort/#mongodb-pipeline-pipe.-sort

	INDEXING IN DBMS
	Index structure:
	Indexing Methods
	Ordered indices
	Primary Index
	Dense index
	Sparse index
	Clustering Index
	Secondary Index

	FILE ORGANIZATION
	Objective of file organization
	Types of file organization:

	B+ TREE
	Structure of B+ Tree
	Internal node
	Leaf node
	Searching a record in B+ Tree
	B+ Tree Insertion
	B+ Tree Deletion
	B-TREE INDEX FILES

	STATIC HASHING
	OPERATIONS OF STATIC HASHING
	1. OPEN HASHING
	2. CLOSE HASHING

	DYNAMIC HASHING
	HOW TO SEARCH A KEY
	HOW TO INSERT A NEW RECORD
	FOR EXAMPLE:
	Insert key 9 with hash address 10001 into the above structure:
	Advantages of dynamic hashing
	Disadvantages of dynamic hashing
	Differences between Static and Dynamic Hashing

	QUERY PROCESSING IN DBMS
	Parsing and Translation
	Evaluation
	Query Evaluation Plan

	Optimization
	The use Command
	Syntax
	Example

	The dropDatabase() Method
	Syntax
	Example

	CREATE A HASHED INDEX
	Create a Compound Hashed Index

	$sort (aggregation)
	Definition

