

UNIT 4

Transaction Concepts – ACID Properties – Schedules – Serializability – Concurrency Control –

Need for Concurrency – Locking Protocols – Two Phase Locking – Deadlock – Transaction

Recovery – Save Points – Isolation Levels – SQL Facilities for Concurrency and Recovery.

A transaction is a set of logically related operations. For example, you are
transferring money from your bank account to your friend’s account, the set of
operations would be like this:

Simple Transaction Example
1. Read your account balance
2. Deduct the amount from your balance
3. Write the remaining balance to your account
4. Read your friend’s account balance
5. Add the amount to his account balance
6. Write the new updated balance to his account
This whole set of operations can be called a transaction. Although I have shown you
read, write and update operations in the above example but the transaction can
have operations like read, write, insert, update, delete.

In DBMS, we write the above 6 steps transaction like this:
Lets say your account is A and your friend’s account is B, you are transferring
10000 from A to B, the steps of the transaction are:

In the above transaction R refers to the Read operation and W refers to the write
operation.

Transaction failure in between the operations

Now that we understand what is transaction, we should understand what are the
problems associated with it.

The main problem that can happen during a transaction is that the transaction can
fail before finishing the all the operations in the set. This can happen due to power
failure, system crash etc. This is a serious problem that can leave database in an
inconsistent state. Assume that transaction fail after third operation (see the

SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

AN AUTONOMOUS INSTITUTION

Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

1. R(A);

2. A = A - 10000;

3. W(A);

4. R(B);

5. B = B + 10000;

6. W(B);

example above) then the amount would be deducted from your account but your
friend will not receive it.

To solve this problem, we have the following two operations

Commit: If all the operations in a transaction are completed successfully then
commit those changes to the database permanently.

Rollback: If any of the operation fails then rollback all the changes done by previous
operations.

Even though these operations can help us avoiding several issues that may arise
during transaction but they are not sufficient when two transactions are running
concurrently. To handle those problems we need to understand database ACID
properties.

ACID PROPERTIES IN DBMS

A transaction is a single logical unit of work which accesses and possibly modifies
the contents of a database. Transactions access data using read and write
operations. In order to maintain consistency in a database, before and after the
transaction, certain properties are followed. These are called ACID properties.

Atomicity
By this, we mean that either the entire transaction takes place at once or doesn’t
happen at all. There is no midway i.e. transactions do not occur partially. Each
transaction is considered as one unit and either runs to completion or is not
executed at all. It involves the following two operations.
—Abort: If a transaction aborts, changes made to database are not
visible.
—Commit: If a transaction commits, changes made are visible.
Atomicity is also known as the ‘All or nothing rule’.

Consider the following transaction T consisting of T1 and T2: Transfer of 100
from account X to account Y.

If the transaction fails after completion of T1 but before completion of T2.(

say, after write(X) but before write(Y)), then amount has been deducted from X

but not added to Y. This results in an inconsistent database state. Therefore, the

transaction must be executed in entirety in order to ensure correctness of database

state.

Consistency
This means that integrity constraints must be maintained so that the database is
consistent before and after the transaction. It refers to the correctness of a database.
Referring to the example above, The total amount before and after the transaction
must be maintained.

Total before T occurs = 500 + 200 =
700. Total after T occurs = 400 + 300 =
700.

Therefore, database is consistent. Inconsistency occurs in case T1 completes but
T2 fails. As a result T is incomplete.

Isolation
This property ensures that multiple transactions can occur concurrently without
leading to the inconsistency of database state. Transactions occur independently
without interference. Changes occurring in a particular transaction will not be
visible to any other transaction until that particular change in that transaction is
written to memory or has been committed. This property ensures that the execution
of transactions concurrently will result in a state that is equivalent to a state
achieved these were executed serially in some order. Let X= 500, Y = 500.

Consider two transactions T and T”.

Suppose T has been executed till Read (Y) and then T’’ starts. As a result ,
interleaving of operations takes place due to which T’’ reads correct value of X but
incorrect value of Y and sum computed by

T’’: (X+Y = 50, 000+500=50, 500)
is thus not consistent with the sum at end of
 transaction:
T: (X+Y = 50, 000 + 450 = 50, 450).

This results in database inconsistency, due to a loss of 50 units. Hence, transactions
must take place in isolation and changes should be visible only after they have been
made to the main memory.

Durability:
This property ensures that once the transaction has completed execution, the updates
and modifications to the database are stored in and written to disk and they persist
even if a system failure occurs. These updates now become permanent and are stored
in non-volatile memory. The effects of the transaction, thus, are never lost.
The ACID properties, in totality, provide a mechanism to ensure correctness and
consistency of a database in a way such that each transaction is a group of
operations that acts a single unit, produces consistent results, acts in isolation from
other operations and updates that it makes are durably stored.

DBMS TRANSACTION STATES
In this guide, we will discuss the states of a transaction in DBMS. A transaction
in DBMS can be in one of the following states.

DBMS Transaction States Diagram

Lets discuss these states one by one.
Active State

As we have discussed in the DBMS transaction introduction that a transaction is a
sequence of operations. If a transaction is in execution then it is said to be in active
state. It doesn’t matter which step is in execution, until unless the transaction is
executing, it remains in active state. Failed State
If a transaction is executing and a failure occurs, either a hardware failure or a
software failure then the transaction goes into failed state from the active state.
Partially Committed State
As we can see in the above diagram that a transaction goes into “partially
committed” state from the active state when there are read and write operations
present in the transaction.
A transaction contains number of read and write operations. Once the whole
transaction is successfully executed, the transaction goes into partially committed
state where we have all the read and write operations performed on the main
memory (local memory) instead of the actual database.
The reason why we have this state is because a transaction can fail during execution
so if we are making the changes in the actual database instead of local memory,
database may be left in

an inconsistent state in case of any failure. This state helps us to rollback the
changes made to the database in case of a failure during execution.

Committed State
If a transaction completes the execution successfully then all the changes made in the
local memory during partially committed state are permanently stored in the
database. You can also see in the above diagram that a transaction goes from partially
committed state to committed state when everything is successful.
Aborted State
As we have seen above, if a transaction fails during execution then the transaction goes
into a failed state. The changes made into the local memory (or buffer) are rolled back
to the previous consistent state and the transaction goes into aborted state from the
failed state. Refer the diagram to see the interaction between failed and aborted state.

Types of Schedules in DBMS

Schedule, as the name suggests, is a process of lining the transactions and executing
them one by one. When there are multiple transactions that are running in a
concurrent manner and the order of operation is needed to be set so that the
operations do not overlap each other, Scheduling is brought into play and the
transactions are timed accordingly.

1. Serial Schedules:

Schedules in which the transactions are executed non-interleaved, i.e., a serial
schedule is one in which no transaction starts until a running transaction has
ended are called serial schedules. i.e., In Serial schedule, a transaction is
executed completely before starting the execution of another transaction. In

other words, you can say that in serial schedule, a transaction does not start
execution until the currently running transaction finished execution. This type
of execution of transaction is also known as non- interleaved execution. The
example we have seen above is the serial schedule.

Example: Consider the following schedule involving two transactions T1 and T2.

R(A)

W(A)

R(B)

W(B)

R(A)

R(B)

where R(A) denotes that a read operation is performed on some data item

‘A’ This is a serial schedule since the transactions perform serially in the order T1 —

> T2

2. Non-Serial Schedule:

This is a type of Scheduling where the operations of multiple transactions are
interleaved. This might lead to a rise in the concurrency problem. The transactions
are executed in a non- serial manner, keeping the end result correct and same as
the serial schedule. Unlike the serial schedule where one transaction must wait for
another to complete all its operation, in the non-serial schedule, the other
transaction proceeds without waiting for the previous transaction to complete. This
sort of schedule does not provide any benefit of the concurrent transaction. It can
be of two types namely, Serializable and Non-Serializable Schedule.

Serializability in DBMS

In the field of computer science, serializability is a term that is a property of the system
that describes how the different process operates the shared data. If the result given by
the system is similar to the operation performed by the system, then in this situation, we
call that system serializable. Here the cooperation of the system means there is no
overlapping in the execution of the data. In DBMS, when the data is being written or read
then, the DBMS can stop all the other processes from accessing the data.

In the MongoDB developer certificate, the DBMS uses various locking systems to allow
the other processes while maintaining the integrity of the data. In MongoDB, the most
restricted level for serializability is the employee can be restricted by two-phase locking
or 2PL. In the first phase of the locking level, the data objects are locked before the

T1 T2

execution of the operation. When the transaction has been accomplished, then the lock
for the data object is released. This process guarantees that there is no conflict in
operation and that all the transaction views the database as a conflict database.

The two-phase locking or 2PL system provides a strong guarantee for the conflict of the
database.

Types of Serializability

In DBMS, all the transaction should be arranged in a particular order, even if all the
transaction is concurrent. If all the transaction is not serializable, then it produces the
incorrect result.

In DBMS, there are different types of serializable. Each type of serializable has some
advantages and disadvantages. The two most common types of serializable are view
serializability and conflict serializability.

1. Conflict Serializability

Conflict serializability is a type of conflict operation in serializability that operates the
same data item that should be executed in a particular order and maintains the
consistency of the database. In DBMS, each transaction has some unique value, and every
transaction of the database is based on that unique value of the database.

This unique value ensures that no two operations having the same conflict value are
executed concurrently. For example, let's consider two examples, i.e., the order table and
the customer table. One customer can have multiple orders, but each order only belongs
to one customer. There is some condition for the conflict serializability of the database.
These are as below.

o Both operations should have different transactions.

o Both transactions should have the same data item.

o There should be at least one write operation between the two operations.

If there are two transactions that are executed concurrently, one operation has to add the
transaction of the first customer, and another operation has added by the second
operation. This process ensures that there would be no inconsistency in the database.

2. View Serializability

View serializability is a type of operation in the serializable in which each transaction
should produce some result and these results are the output of proper sequential
execution of the data item. Unlike conflict serialized, the view serializability focuses on
preventing inconsistency in the database. In DBMS, the view serializability provides the
user to view the database in a conflicting way.

In DBMS, we should understand schedules S1 and S2 to understand view serializability
better. These two schedules should be created with the help of two transactions T1 and
T2. To maintain the equivalent of the transaction each schedule has to obey the three
transactions. These three conditions are as follows.

o The first condition is each schedule has the same type of transaction. The meaning

of this condition is that both schedules S1 and S2 must not have the same type of

set of transactions. If one schedule has committed the transaction but does not

match the transaction of another schedule, then the schedule is not equivalent to

each other.

o The second condition is that both schedules should not have the same type of read

or write operation. On the other hand, if schedule S1 has two write operations

while schedule S2 has one write operation, we say that both schedules are not

equivalent to each other. We may also say that there is no problem if the number

of the read operation is different, but there must be the same number of the write

operation in both schedules.

o The final and last condition is that both schedules should not have the same

conflict. Order of execution of the same data item. For example, suppose the

transaction of schedule S1 is T1, and the transaction of schedule S2 is T2. The

transaction T1 writes the data item A, and the transaction T2 also writes the data

item A. in this case, the schedule is not equivalent to each other. But if the schedule

has the same number of each write operation in the data item then we called the

schedule equivalent to each other.

Testing of Serializability in DBMS with Examples

Serializability is a type of property of DBMS in which each transaction is executed
independently and automatically, even though these transactions are executed
concurrently. In other words, we can say that if there are several transactions executed
concurrently, then the main work of the serializability function is to arrange these several
transactions in a sequential manner.

For better understanding, let's explain these with an example. Suppose there are two
users Sona and Archita. Each executes two transactions. Let's transactions T1 and T2 are
executed by Sona, and T3 and T4 are executed by Archita. Suppose transaction T1 reads
and writes the data item A, transaction T2 reads the data item B, transaction T3 reads and
writes the data item C and transaction T4 reads the data item D. Lets the schedule the
above transaction as below.

 T1: Read A → Write A→ Read B → Write B`

 `T2: Read B → Write B`

 T3: Read C → Write C→ Read D → Write D`

 T4: Read D → Write D

Let's first discuss why these transactions are not serializable.

In order for a schedule to be considered serializable, it must first satisfy the conflict
serializability property. In our example schedule above, notice that Transaction 1 (T1)
and Transaction 2 (T2) read data item B before either writing it. This causes a conflict
between T1 and T2 because they are both trying to read and write the same data item
concurrently. Therefore, the given schedule does not conflict with serializability.

However, there is another type of serializability called view serializability which our
example does satisfy. View serializability requires that if two transactions cannot see
each other's updates (i.e., one transaction cannot see the effects of another concurrent
transaction), the schedule is considered to view serializable. In our example, Transaction
2 (T2) cannot see any updates made by Transaction 4 (T4) because they do not share
common data items. Therefore, the schedule is viewed as serializable.

It's important to note that conflict serializability is a stronger property than view
serializability because it requires that all potential conflicts be resolved before any
updates are made (i.e., each transaction must either read or write each data item before
any other transaction can write it). View serializability only requires that if two
transactions cannot see each other's updates, then the schedule is view serializable & it
doesn't matter whether or not there are potential conflicts between them.

All in all, both properties are necessary for ensuring correctness in concurrent
transactions in a database management system.

Benefits of Serializability in DBMS

Below are the benefits of using the serializable in the database.

1. Predictable execution: In serializable, all the threads of the DBMS are executed

at one time. There are no such surprises in the DBMS. In DBMS, all the variables

are updated as expected, and there is no data loss or corruption.

2. Easier to Reason about & Debug: In DBMS all the threads are executed alone, so

it is very easier to know about each thread of the database. This can make the

debugging process very easy. So we don't have to worry about the concurrent

process.

3. Reduced Costs: With the help of serializable property, we can reduce the cost of

the hardware that is being used for the smooth operation of the database. It can

also reduce the development cost of the software.

4. Increased Performance:In some cases, serializable executions can perform

better than their non-serializable counterparts since they allow the developer to

optimize their code for performance.

LOCK-BASED PROTOCOL

In this type of protocol, any transaction cannot read or write data until it acquires an
appropriate lock on it. There are two types of lock:

1. Shared lock:

o It is also known as a Read-only lock. In a shared lock, the data item can only read

by the transaction.

o It can be shared between the transactions because when the transaction holds a

lock, then it can't update the data on the data item.

2. Exclusive lock:

o In the exclusive lock, the data item can be both reads as well as written by the

transaction.

o This lock is exclusive, and in this lock, multiple transactions do not modify the

same data simultaneously.

There are four types of lock protocols

available:

1. Simplistic lock protocol

It is the simplest way of locking the data while transaction. Simplistic lock-based
protocols allow all the transactions to get the lock on the data before insert or delete or
update on it. It will unlock the data item after completing the transaction.

2. Pre-claiming Lock Protocol

o Pre-claiming Lock Protocols evaluate the transaction to list all the data items on

which they need locks.

o Before initiating an execution of the transaction, it requests DBMS for all the lock

on all those data items.

o If all the locks are granted then this protocol allows the transaction to begin. When

the transaction is completed then it releases all the lock.

o If all the locks are not granted then this protocol allows the transaction to rolls

back and waits until all the locks are granted.

3. Two-phase locking (2PL)

o The two-phase locking protocol divides the execution phase of the transaction into

three parts.

o In the first part, when the execution of the transaction starts, it seeks permission

for the lock it requires.

o In the second part, the transaction acquires all the locks. The third phase is started

as soon as the transaction releases its first lock.

o In the third phase, the transaction cannot demand any new locks. It only releases

the acquired locks.

There are two phases of 2PL:

Growing phase: In the growing phase, a new lock on the data item may be acquired by
the transaction, but none can be released.

Shrinking phase: In the shrinking phase, existing lock held by the transaction may be
released, but no new locks can be acquired.

In the below example, if lock conversion is allowed then the following phase can happen:

1. Upgrading of lock (from S(a) to X (a)) is allowed in growing phase.

2. Downgrading of lock (from X(a) to S(a)) must be done in shrinking phase.

Example:

The following way shows how unlocking and locking work with 2-PL.

Transaction T1:

o Growing phase: from step 1-3

o Shrinking phase: from step 5-7

o Lock point: at 3

Transaction T2:

o Growing phase: from step 2-6

o Shrinking phase: from step 8-9

o Lock point: at 6

4. Strict Two-phase locking (Strict-2PL)

o The first phase of Strict-2PL is similar to 2PL. In the first phase, after acquiring all

the locks, the transaction continues to execute normally.

o The only difference between 2PL and strict 2PL is that Strict-2PL does not release

a lock after using it.

o Strict-2PL waits until the whole transaction to commit, and then it releases all the

locks at a time.

o Strict-2PL protocol does not have shrinking phase of lock release.

It does not have cascading abort as 2PL does.

Deadlock

In a database management system (DBMS), a deadlock occurs when two or more
transactions are waiting for each other to release resources, such as locks on database
objects, that they need to complete their operations. As a result, none of the transactions
can proceed, leading to a situation where they are stuck or “deadlocked.”

In a database, a deadlock is an unwanted situation in which two or more transactions
are waiting indefinitely for one another to give up locks. Deadlock is said to be one of
the most feared complications in DBMS as it brings the whole system to a Halt.
Example – let us understand the concept of Deadlock with an example :
Suppose, Transaction T1 holds a lock on some rows in the Students table and needs to
update some rows in the Grades table. Simultaneously, Transaction T2 holds locks on
those very rows (Which T1 needs to update) in the Grades table but needs to update
the rows in the Student table held by Transaction T1.
Now, the main problem arises. Transaction T1 will wait for transaction T2 to give up
the lock, and similarly, transaction T2 will wait for transaction T1 to give up the lock.
As a consequence, All activity comes to a halt and remains at a standstill forever unless
the DBMS detects the deadlock and aborts one of the transactions.

Deadlock in DBMS

Deadlock Avoidance: When a database is stuck in a deadlock, It is always better to
avoid the deadlock rather than restarting or aborting the database. The deadlock
avoidance method is suitable for smaller databases whereas the deadlock prevention
method is suitable for larger databases.
One method of avoiding deadlock is using application-consistent logic. In the above-
given example, Transactions that access Students and Grades should always access the
tables in the same order. In this way, in the scenario described above, Transaction T1
simply waits for transaction T2 to release the lock on Grades before it begins. When
transaction T2 releases the lock, Transaction T1 can proceed freely.
Another method for avoiding deadlock is to apply both the row-level locking
mechanism and the READ COMMITTED isolation level. However, It does not guarantee
to remove deadlocks completely.

Deadlock Detection: When a transaction waits indefinitely to obtain a lock, The
database management system should detect whether the transaction is involved in a
deadlock or not.
Wait-for-graph is one of the methods for detecting the deadlock situation. This method
is suitable for smaller databases. In this method, a graph is drawn based on the
transaction and its lock on the resource. If the graph created has a closed loop or a cycle,
then there is a deadlock.
For the above-mentioned scenario, the Wait-For graph is drawn below:

Deadlock prevention: For a large database, the deadlock prevention method is
suitable. A deadlock can be prevented if the resources are allocated in such a way that
a deadlock never occurs. The DBMS analyzes the operations whether they can create a
deadlock situation or not, If they do, that transaction is never allowed to be executed.
Deadlock prevention mechanism proposes two schemes:

 Wait-Die Scheme: In this scheme, If a transaction requests a resource that is locked
by another transaction, then the DBMS simply checks the timestamp of both
transactions and allows the older transaction to wait until the resource is available
for execution.
Suppose, there are two transactions T1 and T2, and Let the timestamp of any
transaction T be TS (T). Now, If there is a lock on T2 by some other transaction and
T1 is requesting resources held by T2, then DBMS performs the following actions:
Checks if TS (T1) < TS (T2) – if T1 is the older transaction and T2 has held some
resource, then it allows T1 to wait until resource is available for execution. That
means if a younger transaction has locked some resource and an older transaction
is waiting for it, then an older transaction is allowed to wait for it till it is available.
If T1 is an older transaction and has held some resource with it and if T2 is waiting

for it, then T2 is killed and restarted later with random delay but with the same
timestamp. i.e. if the older transaction has held some resource and the younger
transaction waits for the resource, then the younger transaction is killed and
restarted with a very minute delay with the same timestamp.
This scheme allows the older transaction to wait but kills the younger one.

 Wound Wait Scheme: In this scheme, if an older transaction requests for a resource
held by a younger transaction, then an older transaction forces a younger
transaction to kill the transaction and release the resource. The younger transaction
is restarted with a minute delay but with the same timestamp. If the younger
transaction is requesting a resource that is held by an older one, then the younger
transaction is asked to wait till the older one releases it.

The following table lists the differences between Wait – Die and Wound -Wait scheme
prevention schemes:

Wait – Die Wound -Wait

It is based on a non-preemptive

technique.

It is based on a preemptive

technique.

In this, older transactions must wait

for the younger one to release its data

items.

In this, older transactions

never wait for younger

transactions.

The number of aborts and rollbacks

is higher in these techniques.

In this, the number of aborts

and rollback is lesser.

Applications:

Delayed Transactions: Deadlocks can cause transactions to be delayed, as the
resources they need are being held by other transactions. This can lead to slower
response times and longer wait times for users.
Lost Transactions: In some cases, deadlocks can cause transactions to be lost or
aborted, which can result in data inconsistencies or other issues.
Reduced Concurrency: Deadlocks can reduce the level of concurrency in the system,
as transactions are blocked waiting for resources to become available. This can lead to
slower transaction processing and reduced overall throughput.
Increased Resource Usage: Deadlocks can result in increased resource usage, as
transactions that are blocked waiting for resources to become available continue to
consume system resources. This can lead to performance degradation and increased
resource contention.

Reduced User Satisfaction: Deadlocks can lead to a perception of poor system
performance and can reduce user satisfaction with the application. This can have a
negative impact on user adoption and retention.

Features of deadlock in a DBMS:

Mutual Exclusion: Each resource can be held by only one transaction at a time, and
other transactions must wait for it to be released.
Hold and Wait: Transactions can request resources while holding on to resources
already allocated to them.
No Preemption: Resources cannot be taken away from a transaction forcibly, and the
transaction must release them voluntarily.
Circular Wait: Transactions are waiting for resources in a circular chain, where each
transaction is waiting for a resource held by the next transaction in the chain.
Indefinite Blocking: Transactions are blocked indefinitely, waiting for resources to
become available, and no transaction can proceed.
System Stagnation: Deadlock leads to system stagnation, where no transaction can
proceed, and the system is unable to make any progress.
Inconsistent Data: Deadlock can lead to inconsistent data if transactions are unable to
complete and leave the database in an intermediate state.
Difficult to Detect and Resolve: Deadlock can be difficult to detect and resolve, as it
may involve multiple transactions, resources, and dependencies.

Disadvantages:

System downtime: Deadlock can cause system downtime, which can result in loss of
productivity and revenue for businesses that rely on the DBMS.
Resource waste: When transactions are waiting for resources, these resources are not
being used, leading to wasted resources and decreased system efficiency.
Reduced concurrency: Deadlock can lead to a decrease in system concurrency, which
can result in slower transaction processing and reduced throughput.
Complex resolution: Resolving deadlock can be a complex and time-consuming
process, requiring system administrators to intervene and manually resolve the
deadlock.
Increased system overhead: The mechanisms used to detect and resolve deadlock,
such as timeouts and rollbacks, can increase system overhead, leading to decreased
performance.

RECOVERY WITH CONCURRENT TRANSACTION

o Whenever more than one transaction is being executed, then the interleaved of

logs occur. During recovery, it would become difficult for the recovery system to

backtrack all logs and then start recovering.

o To ease this situation, 'checkpoint' concept is used by most DBMS.

Isolation levels define the degree to which a transaction must be isolated from the data
modifications made by any other transaction in the database system. A transaction
isolation level is defined by the following phenomena:

 Dirty Read – A Dirty read is a situation when a transaction reads data that has not
yet been committed. For example, Let’s say transaction 1 updates a row and leaves
it uncommitted, meanwhile, Transaction 2 reads the updated row. If transaction 1
rolls back the change, transaction 2 will have read data that is considered never to
have existed.

 Non Repeatable read – Non Repeatable read occurs when a transaction reads the
same row twice and gets a different value each time. For example, suppose
transaction T1 reads data. Due to concurrency, another transaction T2 updates the
same data and commit, Now if transaction T1 rereads the same data, it will retrieve
a different value.

 Phantom Read – Phantom Read occurs when two same queries are executed, but
the rows retrieved by the two, are different. For example, suppose transaction T1
retrieves a set of rows that satisfy some search criteria. Now, Transaction T2
generates some new rows that match the search criteria for transaction T1. If
transaction T1 re-executes the statement that reads the rows, it gets a different set
of rows this time.

Based on these phenomena, The SQL standard defines four isolation levels:

1. Read Uncommitted – Read Uncommitted is the lowest isolation level. In this level,
one transaction may read not yet committed changes made by other transactions,
thereby allowing dirty reads. At this level, transactions are not isolated from each
other.

2. Read Committed – This isolation level guarantees that any data read is committed
at the moment it is read. Thus it does not allow dirty read. The transaction holds a
read or write lock on the current row, and thus prevents other transactions from
reading, updating, or deleting it.

3. Repeatable Read – This is the most restrictive isolation level. The transaction holds
read locks on all rows it references and writes locks on referenced rows for update
and delete actions. Since other transactions cannot read, update or delete these
rows, consequently it avoids non-repeatable read.

4. Serializable – This is the highest isolation level. A serializable execution is
guaranteed to be serializable. Serializable execution is defined to be an execution of
operations in which concurrently executing transactions appears to be serially
executing.

The Table given below clearly depicts the relationship between isolation levels, read
phenomena, and locks:

Anomaly Serializable is not the same as Serializable. That is, it is necessary, but not
sufficient that a Serializable schedule should be free of all three phenomena types.

Transaction isolation levels are used in database management systems (DBMS) to
control the level of interaction between concurrent transactions.

The four standard isolation levels are:

Read Uncommitted: This is the lowest level of isolation where a transaction can see
uncommitted changes made by other transactions. This can result in dirty reads, non-
repeatable reads, and phantom reads.
Read Committed: In this isolation level, a transaction can only see changes made by
other committed transactions. This eliminates dirty reads but can still result in non-
repeatable reads and phantom reads.
Repeatable Read: This isolation level guarantees that a transaction will see the same
data throughout its duration, even if other transactions commit changes to the data.
However, phantom reads are still possible.
Serializable: This is the highest isolation level where a transaction is executed as if it
were the only transaction in the system. All transactions must be executed sequentially,
which ensures that there are no dirty reads, non-repeatable reads, or phantom reads.

	Simple Transaction Example
	In DBMS, we write the above 6 steps transaction like this:
	Transaction failure in between the operations
	ACID PROPERTIES IN DBMS
	Atomicity
	Consistency
	Isolation
	T’’: (X+Y = 50, 000+500=50, 500)
	T: (X+Y = 50, 000 + 450 = 50, 450).
	Durability:

	DBMS TRANSACTION STATES
	DBMS Transaction States Diagram
	Active State
	Partially Committed State
	Committed State
	Aborted State

	Types of Schedules in DBMS
	1. Serial Schedules:
	2. Non-Serial Schedule:

	Serializability in DBMS
	Types of Serializability
	1. Conflict Serializability
	2. View Serializability

	Testing of Serializability in DBMS with Examples
	Benefits of Serializability in DBMS

	LOCK-BASED PROTOCOL
	There are four types of lock protocols available:
	1. Simplistic lock protocol
	2. Pre-claiming Lock Protocol
	3. Two-phase locking (2PL)
	4. Strict Two-phase locking (Strict-2PL)
	Applications:
	Features of deadlock in a DBMS:
	Disadvantages:

	RECOVERY WITH CONCURRENT TRANSACTION
	The four standard isolation levels are:

