

UNIT 3

Dependencies and Normal forms - Functional Dependencies, Armstrong's axioms for

FD's, closure of a set of FD's, minimal covers-Non- loss decomposition-First, Second, Third

Normal Forms, Dependency Preservation-Boyce/Codd Normal Form-Multivalued

Dependencies and Fourth Normal Form- Join Dependencies and Fifth Normal Form

DEPENDENCIES

 A dependency is a constraint that governs or defines the relationship between two
or more attributes.

 In a database, it happens when information recorded in the same table uniquely
determines other information stored in the same table.

 This may also be described as a relationship in which knowing the value of one
attribute (or collection of attributes) in the same table tells you the value of another
attribute (or set of attributes).

 It's critical to understand database dependencies since they serve as the foundation
for database normalization.

FUNCTIONAL DEPENDENCY

The functional dependency is a relationship that exists between two attributes. It
typically exists between the primary key and non-key attribute within a table.

X → Y

The left side of FD is known as a determinant, the right side of the production is known
as a dependent.

For example:

Assume we have an employee table with attributes: Emp_Id, Emp_Name, Emp_Address.

Here Emp_Id attribute can uniquely identify the Emp_Name attribute of employee table
because if we know the Emp_Id, we can tell that employee name associated with it.

Functional dependency can be written as:

Emp_Id → Emp_Name

We can say that Emp_Name is functionally dependent on Emp_Id.

Types of Functional dependency

 SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

AN AUTONOMOUS INSTITUTION

Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

1. TRIVIAL FUNCTIONAL DEPENDENCY

o A → B has trivial functional dependency if B is a subset of A.

o The following dependencies are also trivial like: A → A, B → B

Example:

Consider a table with two columns Employee_Id and Employee_Name.

{Employee_id, Employee_Name} → Employee_Id is a trivial functional dependency as

Employee_Id is a subset of {Employee_Id, Employee_Name}.

Also, Employee_Id → Employee_Id and Employee_Name → Employee_Name are trivial

 dependencies too.

2. NON-TRIVIAL FUNCTIONAL DEPENDENCY

o A → B has a non-trivial functional dependency if B is not a subset of A.

o When A intersection B is NULL, then A → B is called as complete non-trivial.

Example:

ID → Name,
Name → DOB

ARMSTRONG AXIOMS

The term Armstrong Axioms refers to the sound and complete set of inference rules or

axioms, introduced by William W. Armstrong, that is used to test the logical implication

of functional dependencies. If F is a set of functional dependencies then the closure of

F, denoted as F+, is the set of all functional dependencies logically implied by F.

Armstrong’s Axioms are a set of rules, that when applied repeatedly, generates a closure

of functional dependencies.

Axioms

 Axiom of Reflexivity: If A is a set of attributes and B is a subset of A, then A holds B.

If B⊆C then A→B. This property is trivial property.

 Axiom of Augmentation: If A→B holds and Y is the attribute set, then AY→BY also

holds. That is adding attributes to dependencies, does not change the basic

dependencies. If A→B, then AC→BC for any C.

 Axiom of Transitivity: Same as the transitive rule in algebra, if A→B holds

and B→C holds, then A→C also holds. A→B is called A functionally which

determines B. If X→Y and Y→Z, then X→Z.

Secondary Rules

These rules can be derived from the above axioms.

 Union: If A→B holds and A→C holds, then A→BC holds.

If X→Y and X→Z then X→YZ.

 Composition: If A→B and X→Y hold, then AX→BY holds.

 Decomposition: If A→BC holds then A→B and A→C hold.

If X→YZ then X→Y and X→Z.

 Pseudo Transitivity: If A→B holds and BC→D holds, then AC→D holds.

If X→Y and YZ→W then XZ→W.

 Self Determination: It is similar to the Axiom of Reflexivity, i.e. A→A for any A.

 Extensivity: Extensivity is a case of augmentation. If AC→A, and A→B, then AC→B.

Similarly, AC→ABC and ABC→BC. This leads to AC→BC.

Armstrong Relation

Armstrong Relation can be stated as a relation that is able to satisfy all functional

dependencies in the F+ Closure. In the given set of dependencies, the size of the

minimum Armstrong Relation is an exponential function of the number of attributes

present in the dependency under consideration.

Why Armstrong Axioms Refer to the Sound and Complete?

By sound, we mean that given a set of functional dependencies F specified on a relation

schema R, any dependency that we can infer from F by using the primary rules of

Armstrong axioms holds in every relation state r of R that satisfies the dependencies in

F.

By complete, we mean that using primary rules of Armstrong axioms repeatedly to infer

dependencies until no more dependencies can be inferred results in the complete set of

all possible dependencies that can be inferred from F.

Advantages of Using Armstrong’s Axioms in Functional Dependency

 They provide a systematic and efficient method for inferring additional functional

dependencies from a given set of functional dependencies, which can help to

optimize database design.

 They can be used to identify redundant functional dependencies, which can help to

eliminate unnecessary data and improve database performance.

 They can be used to verify whether a set of functional dependencies is a minimal

cover, which is a set of dependencies that cannot be further reduced without losing

information.

Disadvantages of Using Armstrong’s Axioms in Functional Dependency

 The process of using Armstrong’s axioms to infer additional functional

dependencies can be computationally expensive, especially for large databases with

many tables and relationships.

 The axioms do not take into account the semantic meaning of data, and may not

always accurately reflect the relationships between data elements.

 The axioms can result in a large number of inferred functional dependencies, which

can be difficult to manage and maintain over time.

A minimal cover of a set of functional dependencies (FD) E is a minimal set of
dependencies F that is equivalent to E.

The formal definition is: A set of FD F to be minimal if it satisfies the following conditions
−

 Every dependency in F has a single attribute for its right-hand side.
 We cannot replace any dependency X->A in F with a dependency Y->A, where Y is

a proper subset of X, and still have a set of dependencies that is equivalent to F.
 We cannot remove any dependency from F and still have a set of dependencies that

are equivalent to F.

Canonical cover is called minimal cover which is called the minimum set of FDs. A set of
FD FC is called canonical cover of F if each FD in FC is a −

 Simple FD.

https://www.geeksforgeeks.org/significance-of-database-design/

 Left reduced FD.

 Non-redundant FD.

Simple FD − X->Y is a simple FD if Y is a single attribute.

Left reduced FD − X->Y is a left reduced FD if there are no extraneous attributes in X.
{extraneous attributes: Let XA->Y then, A is a extraneous attribute if X_>Y}

Non-redundant FD − X->Y is a Non-redundant FD if it cannot be derived from F- {X->y}.

Example

Consider an example to find canonical cover of F.

The given functional dependencies are as follows −

A -> BC

B -> C

A -> B

AB -> C

 Minimal cover: The minimal cover is the set of FDs which are equivalent to the
given FDs.

 Canonical cover: In canonical cover, the LHS (Left Hand Side) must be unique.

First of all, we will find the minimal cover and then the canonical cover.

First step − Convert RHS attribute into singleton attribute.

A -> B

A -> C

B -> C

A -> B

AB -> C

Second step − Remove the extra LHS attribute

Find the closure of A.

A+ = {A, B, C}

So, AB -> C can be converted into A -> C

A -> B

A -> C

B -> C

A -> B

A -> C

Third step − Remove the redundant FDs.

A -> B

B -> C

Now, we will convert the above set of FDs into canonical cover.

The canonical cover for the above set of FDs will be as follows −

A -> BC

B -> C

Relational Decomposition

o When a relation in the relational model is not in appropriate normal form then the

decomposition of a relation is required.

o In a database, it breaks the table into multiple tables.

o If the relation has no proper decomposition, then it may lead to problems like loss

of information.

o Decomposition is used to eliminate some of the problems of bad design like

anomalies, inconsistencies, and redundancy.

Types of Decomposition

Lossless Decomposition

o If the information is not lost from the relation that is decomposed, then the

decomposition will be lossless.

o The lossless decomposition guarantees that the join of relations will result in the

same relation as it was decomposed.

o The relation is said to be lossless decomposition if natural joins of all the

decomposition give the original relation.

Example:

EMPLOYEE_DEPARTMENT table:

EMP_ID EMP_NAME EMP_AGE EMP_CITY DEPT_ID DEPT_NAME

22 Denim 28 Mumbai 827 Sales

33 Alina 25 Delhi 438 Marketing

46 Stephan 30 Bangalore 869 Finance

52 Katherine 36 Mumbai 575 Production

60 Jack 40 Noida 678 Testing

The above relation is decomposed into two relations EMPLOYEE and DEPARTMENT

EMP_ID EMP_NAME EMP_AGE EMP_CITY

22 Denim 28 Mumbai

33 Alina 25 Delhi

46 Stephan 30 Bangalore

52 Katherine 36 Mumbai

60 Jack 40 Noida

DEPARTMENT table

DEPT_ID EMP_ID DEPT_NAME

827 22 Sales

438 33 Marketing

869 46 Finance

575 52 Production

678 60 Testing

Now, when these two relations are joined on the common column "EMP_ID", then the
resultant relation will look like:

Employee ⋈ Department

EMP_ID EMP_NAME EMP_AGE EMP_CITY DEPT_ID DEPT_NAME

22 Denim 28 Mumbai 827 Sales

33 Alina 25 Delhi 438 Marketing

46 Stephan 30 Bangalore 869 Finance

52 Katherine 36 Mumbai 575 Production

60 Jack 40 Noida 678 Testing

Hence, the decomposition is Lossless join decomposition.

Dependency Preserving

o It is an important constraint of the database.

o In the dependency preservation, at least one decomposed table must satisfy every

dependency.

o If a relation R is decomposed into relation R1 and R2, then the dependencies of R

either must be a part of R1 or R2 or must be derivable from the combination of

functional dependencies of R1 and R2.

o For example, suppose there is a relation R (A, B, C, D) with functional dependency

set (A->BC). The relational R is decomposed into R1(ABC) and R2(AD) which is

dependency preserving because FD A->BC is a part of relation R1(ABC).

NORMALIZATION

o Normalization is the process of organizing the data in the database.

o Normalization is used to minimize the redundancy from a relation or set of

relations. It is also used to eliminate undesirable characteristics like Insertion,

Update, and Deletion Anomalies.

o Normalization divides the larger table into smaller and links them using

relationships.

o The normal form is used to reduce redundancy from the database table.

Why do we need Normalization?

The main reason for normalizing the relations is removing these anomalies. Failure to
eliminate anomalies leads to data redundancy and can cause data integrity and other
problems as the database grows. Normalization consists of a series of guidelines that
helps to guide you in creating a good database structure.

Data modification anomalies can be categorized into three types:

o Insertion Anomaly: Insertion Anomaly refers to when one cannot insert a new

tuple into a relationship due to lack of data.

o Deletion Anomaly: The delete anomaly refers to the situation where the deletion

of data results in the unintended loss of some other important data.

o Updatation Anomaly: The update anomaly is when an update of a single data

value requires multiple rows of data to be updated.

Types of Normal Forms:

Normalization works through a series of stages called Normal forms. The normal forms
apply to individual relations. The relation is said to be in particular normal form if it
satisfies constraints.

Following are the various types of Normal forms:

Normal

Form

Description

1NF A relation is in 1NF if it contains an atomic

value.

2NF
A relation will be in 2NF if it is in 1NF and all

non-key attributes are fully functional

dependent on the primary key.

3NF A relation will be in 3NF if it is in 2NF and no

transition dependency exists.

BCNF A stronger definition of 3NF is known as

Boyce Codd's normal form.

4NF
A relation will be in 4NF if it is in Boyce

Codd's normal form and has no multi-valued

dependency.

5NF
A relation is in 5NF. If it is in 4NF and does

not contain any join dependency, joining

should be lossless.

Advantages of Normalization

o Normalization helps to minimize data redundancy.

https://www.javatpoint.com/dbms-first-normal-form
https://www.javatpoint.com/dbms-second-normal-form
https://www.javatpoint.com/dbms-third-normal-form
https://www.javatpoint.com/dbms-forth-normal-form
https://www.javatpoint.com/dbms-fifth-normal-form

o Greater overall database organization.

o Data consistency within the database.

o Much more flexible database design.

o Enforces the concept of relational integrity.

Disadvantages of Normalization

o You cannot start building the database before knowing what the user needs.

o The performance degrades when normalizing the relations to higher normal

forms, i.e., 4NF, 5NF.

o It is very time-consuming and difficult to normalize relations of a higher degree.

o Careless decomposition may lead to a bad database design, leading to serious

problems.

FIRST NORMAL FORM (1NF)

o A relation will be 1NF if it contains an atomic value.

o It states that an attribute of a table cannot hold multiple values. It must hold only

single-valued attribute.

o First normal form disallows the multi-valued attribute, composite attribute, and

their combinations.

Example: Relation EMPLOYEE is not in 1NF because of multi-valued attribute
EMP_PHONE.

EMPLOYEE table:

EMP_ID EMP_NAME EMP_PHONE EMP_STATE

14 John 7272826385,

9064738238

UP

20 Harry 8574783832 Bihar

12 Sam 7390372389,

8589830302

Punjab

The decomposition of the EMPLOYEE table into 1NF has been shown below:

EMP_ID EMP_NAME EMP_PHONE EMP_STATE

14 John 7272826385 UP

14 John 9064738238 UP

20 Harry 8574783832 Bihar

12 Sam 7390372389 Punjab

12 Sam 8589830302 Punjab

SECOND NORMAL FORM (2NF)

o In the 2NF, relational must be in 1NF.

o In the second normal form, all non-key attributes are fully functional dependent

on the primary key

Example: Let's assume, a school can store the data of teachers and the subjects they
teach. In a school, a teacher can teach more than one subject.

TEACHER table

TEACHER_ID SUBJECT TEACHER_AGE

25 Chemistry 30

25 Biology 30

47 English 35

83 Math 38

83 Computer 38

In the given table, non-prime attribute TEACHER_AGE is dependent on TEACHER_ID
which is a proper subset of a candidate key. That's why it violates the rule for 2NF.

To convert the given table into 2NF, we decompose it into two tables:

TEACHER_DETAIL table:

TEACHER_ID TEACHER_AGE

25 30

47 35

83 38

TEACHER_SUBJECT table:

TEACHER_ID SUBJECT

25 Chemistry

25 Biology

47 English

83 Math

83 Computer

THIRD NORMAL FORM (3NF)

o A relation will be in 3NF if it is in 2NF and not contain any transitive partial

dependency.

o 3NF is used to reduce the data duplication. It is also used to achieve the data

integrity.

o If there is no transitive dependency for non-prime attributes, then the relation

must be in third normal form.

A relation is in third normal form if it holds atleast one of the following conditions for
every non-trivial function dependency X → Y.

1. X is a super key.

2. Y is a prime attribute, i.e., each element of Y is part of some candidate key.

Example:

EMPLOYEE_DETAIL table:

EMP_ID EMP_NAME EMP_ZIP EMP_STATE EMP_CITY

222 Harry 201010 UP Noida

333 Stephan 02228 US Boston

444 Lan 60007 US Chicago

555 Katharine 06389 UK Norwich

666 John 462007 MP Bhopal

Super key in the table above:

1. {EMP_ID}, {EMP_ID, EMP_NAME}, {EMP_ID, EMP_NAME, EMP_ZIP}....so on

Candidate key: {EMP_ID}

Non-prime attributes: In the given table, all attributes except EMP_ID are non-
prime.

Here, EMP_STATE & EMP_CITY dependent on EMP_ZIP and EMP_ZIP dependent
on EMP_ID. The non-prime attributes (EMP_STATE, EMP_CITY) transitively
dependent on super key(EMP_ID). It violates the rule of third normal form.

That's why we need to move the EMP_CITY and EMP_STATE to the new
<EMPLOYEE_ZIP> table, with EMP_ZIP as a Primary key.

EMPLOYEE table:

EMP_ID EMP_NAME EMP_ZIP

222 Harry 201010

333 Stephan 02228

444 Lan 60007

555 Katharine 06389

666 John 462007

EMPLOYEE_ZIP table:

EMP_ZIP EMP_STATE EMP_CITY

201010 UP Noida

02228 US Boston

60007 US Chicago

06389 UK Norwich

462007 MP Bhopal

BOYCE CODD NORMAL FORM (BCNF)

o BCNF is the advance version of 3NF. It is stricter than 3NF.

o A table is in BCNF if every functional dependency X → Y, X is the super key of the

table.

o For BCNF, the table should be in 3NF, and for every FD, LHS is super key.

Example: Let's assume there is a company where employees work in more than one
department.

EMPLOYEE table:

EMP_ID EMP_COUNTRY EMP_DEPT DEPT_TYPE EMP_DEPT_NO

264 India Designing D394 283

264 India Testing D394 300

364 UK Stores D283 232

364 UK Developing D283 549

In the above table Functional dependencies are as follows:

1. EMP_ID → EMP_COUNTRY

2. EMP_DEPT → {DEPT_TYPE, EMP_DEPT_NO}

Candidate key: {EMP-ID, EMP-DEPT}

The table is not in BCNF because neither EMP_DEPT nor EMP_ID alone are keys.

To convert the given table into BCNF, we decompose it into three tables:

EMP_COUNTRY table:

EMP_ID EMP_COUNTRY

264 India

264 India

EMP_DEPT table:

EMP_DEPT DEPT_TYPE EMP_DEPT_NO

Designing D394 283

Testing D394 300

Stores D283 232

Developing D283 549

EMP_DEPT_MAPPING table:

EMP_ID EMP_DEPT

D394 283

D394 300

D283 232

D283 549

Functional dependencies:

1. EMP_ID → EMP_COUNTRY

2. EMP_DEPT → {DEPT_TYPE, EMP_DEPT_NO}

Candidate keys:

For the first table: EMP_ID
For the second table: EMP_DEPT
For the third table: {EMP_ID, EMP_DEPT}

Now, this is in BCNF because left side part of both the functional dependencies is a key.

Fourth normal form (4NF)

o A relation will be in 4NF if it is in Boyce Codd normal form and has no multi-valued

dependency.

o For a dependency A → B, if for a single value of A, multiple values of B exists, then

the relation will be a multi-valued dependency.

Example

STUDENT

STU_ID COURSE HOBBY

21 Computer Dancing

21 Math Singing

34 Chemistry Dancing

74 Biology Cricket

59 Physics Hockey

The given STUDENT table is in 3NF, but the COURSE and HOBBY are two independent
entity. Hence, there is no relationship between COURSE and HOBBY.

In the STUDENT relation, a student with STU_ID, 21 contains two
courses, Computer and Math and two hobbies, Dancing and Singing. So there is a Multi-
valued dependency on STU_ID, which leads to unnecessary repetition of data.

So to make the above table into 4NF, we can decompose it into two tables:

STUDENT_COURSE

STU_ID COURSE

21 Computer

21 Math

34 Chemistry

74 Biology

59 Physics

STUDENT_HOBBY

STU_ID HOBBY

21 Dancing

21 Singing

34 Dancing

74 Cricket

59 Hockey

FIFTH NORMAL FORM (5NF)

o A relation is in 5NF if it is in 4NF and not contains any join dependency and joining

should be lossless.

o 5NF is satisfied when all the tables are broken into as many tables as possible in

order to avoid redundancy.

o 5NF is also known as Project-join normal form (PJ/NF).

Example

SUBJECT LECTURER SEMESTER

Computer Anshika Semester 1

Computer John Semester 1

Math John Semester 1

Math Akash Semester 2

Chemistry Praveen Semester 1

In the above table, John takes both Computer and Math class for Semester 1 but he doesn't
take Math class for Semester 2. In this case, combination of all these fields required to
identify a valid data.

Suppose we add a new Semester as Semester 3 but do not know about the subject and
who will be taking that subject so we leave Lecturer and Subject as NULL. But all three
columns together acts as a primary key, so we can't leave other two columns blank.

So to make the above table into 5NF, we can decompose it into three relations P1, P2 &
P3:

P1

SEMESTER SUBJECT

Semester 1 Computer

Semester 1 Math

Semester 1 Chemistry

Semester 2 Math

P2

SUBJECT LECTURER

Computer Anshika

Computer John

Math John

Math Akash

Chemistry Praveen

P3

SEMSTER LECTURER

Semester 1 Anshika

Semester 1 John

Semester 1 John

Semester 2 Akash

Semester 1 Praveen

MULTIVALUED DEPENDENCY

o Multivalued dependency occurs when two attributes in a table are independent of

each other but, both depend on a third attribute.

o A multivalued dependency consists of at least two attributes that are dependent

on a third attribute that's why it always requires at least three attributes.

Example: Suppose there is a bike manufacturer company which produces two
colors(white and black) of each model every year.

BIKE_MODEL MANUF_YEAR COLOR

M2011 2008 White

M2001 2008 Black

M3001 2013 White

M3001 2013 Black

M4006 2017 White

M4006 2017 Black

Here columns COLOR and MANUF_YEAR are dependent on BIKE_MODEL and
independent of each other.

In this case, these two columns can be called as multivalued dependent on BIKE_MODEL.
The representation of these dependencies is shown below:

1. BIKE_MODEL → → MANUF_YEAR

2. BIKE_MODEL → → COLOR

This can be read as "BIKE_MODEL multidetermined MANUF_YEAR" and "BIKE_MODEL
multidetermined COLOR".

JOIN DEPENDENCY

o Join decomposition is a further generalization of Multivalued dependencies.

o If the join of R1 and R2 over C is equal to relation R, then we can say that a join

dependency (JD) exists.

o Where R1 and R2 are the decompositions R1(A, B, C) and R2(C, D) of a given

relations R (A, B, C, D).

o Alternatively, R1 and R2 are a lossless decomposition of R.

o A JD ⋈ {R1, R2,..., Rn} is said to hold over a relation R if R1, R2,....., Rn is a lossless-

join decomposition.

o The *(A, B, C, D), (C, D) will be a JD of R if the join of join's attribute is equal to the

relation R.

o Here, *(R1, R2, R3) is used to indicate that relation R1, R2, R3 and so on are a JD of

R.

	FUNCTIONAL DEPENDENCY
	Types of Functional dependency
	1. TRIVIAL FUNCTIONAL DEPENDENCY
	2. NON-TRIVIAL FUNCTIONAL DEPENDENCY

	ARMSTRONG AXIOMS
	Axioms
	Secondary Rules
	Armstrong Relation

	Why Armstrong Axioms Refer to the Sound and Complete?
	Advantages of Using Armstrong’s Axioms in Functional Dependency
	Disadvantages of Using Armstrong’s Axioms in Functional Dependency
	Example

	Relational Decomposition
	Types of Decomposition
	Lossless Decomposition
	Dependency Preserving

	NORMALIZATION
	Types of Normal Forms:
	Advantages of Normalization
	Disadvantages of Normalization

	FIRST NORMAL FORM (1NF)
	SECOND NORMAL FORM (2NF)
	THIRD NORMAL FORM (3NF)
	BOYCE CODD NORMAL FORM (BCNF)
	Fourth normal form (4NF)
	Example

	FIFTH NORMAL FORM (5NF)
	Example

	MULTIVALUED DEPENDENCY
	JOIN DEPENDENCY

