SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

WSINFUTION'S www.snsgroups.com

AN AUTONOMOUS INSTITUTION

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

Topic: 4.1 – Introduction of application of Numerical differentiation and integration

Interpolation with unequal Indervals
Lagrange's Interpolation Formula
Let
$$y_0, y_1, \dots, y_n$$
 be $(n+1)$ points of a
function $y = f(x)$ where $f(x)$ is assumed to
be a polynomial in x , corresponding to arguments
 (a, x_1, \dots, x_n) , not necessarily equally spaced.
 $y = f(x) = \frac{(x - x_1)(x - x_2) \cdots (x - x_n)}{(x_0 - x_2) \cdots (x_0 - x_n)} y_0$
 $+ \frac{(x - x_0)(x - x_2) \cdots (x - x_n)}{(x_0 - x_1)(x_0 - x_2) \cdots (x_{n-1})} y_n$
 $+ \frac{(x - x_0)(x - x_1) \cdots (x_{n-1})}{(x_n - x_0)(x_{n-1}) \cdots (x_{n-1})} y_n$
This is called the Lagrange's formula for
interpolation
Problems
D Using Lagrange's interpolation formula, find
the value of y corresponding to $x = 10$ from the
following data
 $x = 5$ 6 9 11.
 $y = 12$ 13 14 16

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

AN AUTONOMOUS INSTITUTION

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

 $x_0 = 5$, $x_1 = 6$, $x_2 = 9$, $x_3 = 11$ Given yo=12, y1=13, y2=14, y3=16 By Lagrange's interpolation formula $Y(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} y_0$ + $\frac{(\chi - \chi_0)(\chi - \chi_2)(\chi - \chi_3)}{(\chi_1 - \chi_0)(\chi_1 - \chi_2)(\chi_1 - \chi_3)}$ y₁ + $\frac{(\chi - \chi_0)(\chi - \chi_1)(\chi - \chi_3)}{(\chi_2 - \chi_0)(\chi_2 - \chi_1)(\chi_2 - \chi_3)}$ + $(x - x_0)(x - x_1)(x - x_2)$ y₃ $(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)$ $Y(0) = \frac{4 \times 1 \times (-1)}{(-1)(-4)(-6)} (12) + \frac{5(4)(-1)}{1(-3)(-5)} (13)$ + $\frac{5(4)(-1)}{4(3)(-2)}$ (1+) + $\frac{5(4)(1)}{6(5)(2)}$ (16) -. y(10) = 14.67 ② Using Lagrange's interpolation formula, fit polynomial to the following data

 2
 0
 1
 3
 4

 6 12